Kinematic first-order calving law implies potential for abrupt ice-shelf retreat

Published: May 1, 2012 by The PISM Authors

   
Title Kinematic first-order calving law implies potential for abrupt ice-shelf retreat
Authors Anders Levermann and others
Venue The Cryosphere
Location Antarctic ice shelves

Observed large-scale disintegration of Antarctic ice shelves has moved their fronts closer towards grounded ice, accelerating ice-sheet discharge and contributing to global sea-level rise. Here we describe the first-order large-scale kinematic contribution to calving which is consistent with large-scale observation. This calving law depends only on local ice properties which are, however, determined by the full topography of the ice shelf. Simulations in PISM-PIK using the parameterization reproduces multiple stable fronts as observed for the Larsen A and B Ice Shelves, including abrupt transitions between them. We also find multiple stable states of the Ross Ice Shelf.

Share

Latest news

MPI-GEA: PhD position on the interaction of ice sheets, ocean and sea level

In the department of Integrative Earth system science at the newly founded Max Planck Institute of Geoanthropology (MPI-GEA) in Jena, Germany, we are providing a three-year PhD position as part of the DFG priority program “Antarctic Research with Comparative Investigations in Arctic Ice Areas”.

PIK Potsdam: PostDoc positions in ice sheet and Earth system modelling

A two-year PostDoc positions in ice sheet and Earth system modelling is available in the Ice Dynamics group, as part of the new Earth Resilience Science Unit (ERSU), at the Potsdam Institute for Climate Impact Research (PIK).

U Copenhagen: 2 PhD positions in ice sheet modelling at the Niels Bohr Institute

Two PhD fellowship positions in ice sheet modelling are advertised at the Niels Bohr Institute, University of Copenhagen.