Reconstruction of basal properties in ice sheets using iterative inverse methods

Published: Sep 1, 2012 by The PISM Authors

   
Title Reconstruction of basal properties in ice sheets using iterative inverse methods
Authors Marijke Habermannand others
Venue Journal of Glaciology

Inverse methods are used to estimate model parameters from observations, here basal shear stress from the surface velocity of an ice sheet. One starts with an initial estimate of the model parameters and then updates them to improve the match to observations in an iterative process. Large-scale spatial features are adjusted first. A stopping criterion prevents the overfitting of data. In this paper, iterative inverse methods are applied to the shallow-shelf approximation forward model. A new incomplete Gauss–Newton method is introduced and compared to the steepest descent and nonlinear conjugate gradient methods. Two different stopping criteria, the discrepancy principle and a recent-improvement threshold, are compared. The IGN method shows faster convergence than the others. Though PISM is not mentioned by this paper, and the experiments were done in python, code supporting these inversion methods is already present in the PISM dev branch.

Share

Latest news

PISM 2.2.1 is out

We are pleased to announce the release of PISM v2.2.1.

Scientist for Modeling Ice Sheet–Climate Interaction at DMI

The Danish Meteorological Institute (DMI), a leading research institution in climate and ice sheet modelling research, is offering a 3-year, full-time position as a Scientist for Modelling Ice Sheet–Climate Interaction.

MPI-GEA: PhD position on the interaction of ice sheets, ocean and sea level

In the department of Integrative Earth system science at the newly founded Max Planck Institute of Geoanthropology (MPI-GEA) in Jena, Germany, we are providing a three-year PhD position as part of the DFG priority program “Antarctic Research with Comparative Investigations in Arctic Ice Areas”.