Selective erosion beneath the Antarctic Peninsula Ice Sheet during LGM retreat

Published: May 1, 2015 by The PISM Authors

Erosion potential shown in color.

Erosion potential shown in color.

   
Title Selective erosion beneath the Antarctic Peninsula Ice Sheet during LGM retreat
Authors N. Golledge
Venue Antarctic Science

This paper uses PISM to investigate how the last glacial maximum Antarctic Peninsula Ice Sheet might have modified its bed both at maximum extent and during progressive grounding line retreat. The work exploits high-resolution whole-Antarctic modelling by the same author (Golledge et al 2013, Golledge et al 2014). PISM results are post-processed to compute an erosion potential which is proportional to the product of modeled basal shear stress and sliding velocity. The results show that peak subglacial erosion rates are preferentially located in areas of convergent flow and where horizontal strain rates are highest, leading to deepening of subglacial basins in such locations. Because the ice sheet selectively erodes its bed beneath outlets, over successive glacial cycles erosional deepening may accelerate the retreat of the ice sheet margin during periods of rising sea level.

Share

Latest news

MPI-GEA: PhD position on the interaction of ice sheets, ocean and sea level

In the department of Integrative Earth system science at the newly founded Max Planck Institute of Geoanthropology (MPI-GEA) in Jena, Germany, we are providing a three-year PhD position as part of the DFG priority program “Antarctic Research with Comparative Investigations in Arctic Ice Areas”.

PIK Potsdam: PostDoc positions in ice sheet and Earth system modelling

A two-year PostDoc positions in ice sheet and Earth system modelling is available in the Ice Dynamics group, as part of the new Earth Resilience Science Unit (ERSU), at the Potsdam Institute for Climate Impact Research (PIK).

U Copenhagen: 2 PhD positions in ice sheet modelling at the Niels Bohr Institute

Two PhD fellowship positions in ice sheet modelling are advertised at the Niels Bohr Institute, University of Copenhagen.