Reconciling the ICE-6G_C reconstruction of glacial chronology with ice sheet dynamics: The cases of Greenland and Antarctica

Published: Dec 1, 2015 by The PISM Authors

Simulated uplift rates compared with GPS observations at 42 Antarctic stations.

Simulated uplift rates compared with GPS observations at 42 Antarctic stations.

   
Title Reconciling the ICE-6G_C reconstruction of glacial chronology with ice sheet dynamics: The cases of Greenland and Antarctica
Authors G. Stuhne and W. Peltier
Venue J. Geophys. Res.: Earth Surface

ICE-6G_C ice thickness histories come from present-day uplift rates, exposure-age and radiocarbon dating, the theory of glacial isostatic adjustment (GIA), and a self-consistent theory of sea level. Such reconstructions are independent of ice dynamical approximations. This paper asks whether ICE-6G_C histories for the Greenland and Antarctic ice sheets are compatible with ice dynamics as represented by PISM models. They infer compatibility when uncertainties in mass balance history are taken fully into account. Uncertainties in atmospheric and sub-shelf mass balance since the Eemian (-122ka)—here represented by the SeaRISE paleo-modeling choices, along with simplifications in the PISM ice dynamics model, are carefully considered in a time-dependent inverse-modeling framework. Modeled Holocene shoreline evidence for relative sea level changes, present-day ice velocities, and present-day uplift rates (figure at left), are used to assess the agreement. The magnitudes of the mass balance modifications needed to “nudge” the thicknesses toward ICE-6G_C values, with several relaxation timescales considered, are evaluated as a measure of misfit between the reconstruction and the ice dynamical simulation.

Share

Latest news

MPI-GEA: PhD position on the interaction of ice sheets, ocean and sea level

In the department of Integrative Earth system science at the newly founded Max Planck Institute of Geoanthropology (MPI-GEA) in Jena, Germany, we are providing a three-year PhD position as part of the DFG priority program “Antarctic Research with Comparative Investigations in Arctic Ice Areas”.

PIK Potsdam: PostDoc positions in ice sheet and Earth system modelling

A two-year PostDoc positions in ice sheet and Earth system modelling is available in the Ice Dynamics group, as part of the new Earth Resilience Science Unit (ERSU), at the Potsdam Institute for Climate Impact Research (PIK).

U Copenhagen: 2 PhD positions in ice sheet modelling at the Niels Bohr Institute

Two PhD fellowship positions in ice sheet modelling are advertised at the Niels Bohr Institute, University of Copenhagen.