References

1

S. Balay and others. PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.15, Argonne National Laboratory, 2021.

2

A. Aschwanden, G. Adalgeirsdóttir, and C. Khroulev. Hindcasting to measure ice sheet model sensitivity to initial states. The Cryosphere, 7:1083–1093, 2013. doi:10.5194/tc-7-1083-2013.

3

R. Bindschadler and twenty-seven others. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea-level (The SeaRISE Project). J. Glaciol, 59(214):195–224, 2013.

4

N. Golledge, A. Mackintosh, and 8 others. Last Glacial Maximum climate in New Zealand inferred from a modelled Southern Alps icefield. Quaternary Science Reviews, 46:30–45, 2012. doi:10.1016/j.quascirev.2012.05.004.

5

N. Golledge and twelve others. Glaciology and geological signature of the Last Glacial Maximum Antarctic ice sheet. Quaternary Sci. Rev., 78(0):225–247, 2013. doi:10.1016/j.quascirev.2013.08.011.

6

J.L. Bamber, R.L. Layberry, and S.P. Gogenini. A new ice thickness and bed data set for the Greenland ice sheet 1: Measurement, data reduction, and errors. J. Geophys. Res., 106 (D24):33,773–33,780, 2001.

7

J. Ettema, M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. L. Bamber, J. E. Box, and R. C. Bales. Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophys. Res. Let., 2009. doi:10.1029/2009GL038110.

8

S. J. Johnsen, D. Dahl-Jensen, W. Dansgaard, and N. Gundestrup. Greenland paleotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus, 47B:624–629, 1995.

9

J. Imbrie and eight others. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine delta-O-18 record. In Milankovitch and Climate: Understanding the Response to Astronomical Forcing, pages 269–305. D. Reidel, 1984.

10

E. Bueler and J. Brown. Shallow shelf approximation as a “sliding law” in a thermodynamically coupled ice sheet model. J. Geophys. Res., 2009. F03008. doi:10.1029/2008JF001179.

11

P. Dickens and T. Morey. Increasing the scalability of PISM for high resolution ice sheet models. In Proceedings of the 14th IEEE International Workshop on Parallel and Distributed Scientific and Engineering Computing, May 2013, Boston. 2013.

12

A. Payne and others. Results from the EISMINT model intercomparison: the effects of thermomechanical coupling. J. Glaciol., 153:227–238, 2000.

13

I. Joughin, M. Fahnestock, D. MacAyeal, J. L. Bamber, and P. Gogineni. Observation and analysis of ice flow in the largest Greenland ice stream. J. Geophys. Res., 106(D24):34021–34034, 2001.

14

D. R. MacAyeal. Large-scale ice flow over a viscous basal sediment: theory and application to ice stream B, Antarctica. J. Geophys. Res., 94(B4):4071–4087, 1989.

15

M. Weis, R. Greve, and K. Hutter. Theory of shallow ice shelves. Continuum Mech. Thermodyn., 11(1):15–50, 1999.

16

E. Bueler, J. Brown, and C. Lingle. Exact solutions to the thermomechanically coupled shallow ice approximation: effective tools for verification. J. Glaciol., 53(182):499–516, 2007.

17

R. Winkelmann, M. A. Martin, M. Haseloff, T. Albrecht, E. Bueler, C. Khroulev, and A. Levermann. The Potsdam Parallel Ice Sheet Model (PISM-PIK) Part 1: Model description. The Cryosphere, 5:715–726, 2011.

18

G. K. C. Clarke. Subglacial processes. Annu. Rev. Earth Planet. Sci., 33:247–276, 2005. doi:10.1146/annurev.earth.33.092203.122621.

19

S. Tulaczyk, W. B. Kamb, and H. F. Engelhardt. Basal mechanics of Ice Stream B, West Antarctica 1. Till mechanics. J. Geophys. Res., 105(B1):463–481, 2000. doi:10.1029/1999jb900329.

20

W. J. J. van Pelt and J. Oerlemans. Numerical simulations of cyclic behaviour in the parallel ice sheet model (pism). Journal of Glaciology, 58(208):347–360, 2012. doi:10.3189/2012JoG11J217.

21

C. Schoof. A variational approach to ice stream flow. J. Fluid Mech., 556:227–251, 2006.

22

A. Aschwanden, E. Bueler, C. Khroulev, and H. Blatter. An enthalpy formulation for glaciers and ice sheets. J. Glaciol., 58(209):441–457, 2012. doi:10.3189/2012JoG11J088.

23

I. Joughin. Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach. Ann. Glaciol., 34:195–201, 2002.

24

S. Price, A. Payne, I. Howat, and B. Smith. Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Nat. Acad. Sci., 108(22):8978–8983, 2011. doi:10.1073/pnas.1017313108.

25

E. Larour, H. Seroussi, M. Morlighem, and E. Rignot. Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM). J. Geophys. Res., 2012. doi:10.1029/2011JF002140.

26

W. J. J. van Pelt, J. Oerlemans, C. H. Reijmer, R. Pettersson, V. A. Pohjola, E. Isaksson, and D. Divine. An iterative inverse method to estimate basal topography and initialize ice flow models. The Cryosphere, 7(3):987–1006, 2013. doi:10.5194/tc-7-987-2013.

27

M. Habermann, M. Truffer, and D. Maxwell. Changing basal conditions during the speed-up of Jakobshavn Isbrae, Greenland. The Cryosphere, 7(6):1679–1692, 2013. doi:10.5194/tc-7-1679-2013.

28

W. T. Pfeffer, J. T. Harper, and S. O'Neel. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science, 321:1340–1343, 2008.

29

R.C. Bales, J.R. McConnell, E. Mosley-Thompson, and G. Lamorey. Accumulation map for the Greenland Ice Sheet: 1971-1990. Geophys. Res. Lett, 28(15):2967–2970, 2001. doi:10.1029/2000GL012052.

30

R. Hock. Glacier melt: a review of processes and their modelling. Prog. Phys. Geog., 29(3):362–391, 2005.

31

P. Huybrechts. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev., 21:203–231, 2002.

32

E. Bueler, C. S. Lingle, and J. A. Kallen-Brown. Fast computation of a viscoelastic deformable Earth model for ice sheet simulation. Ann. Glaciol., 46:97–105, 2007.

33

Ian Joughin, Sarah B. Das, Matt A. King, Ben E. Smith, Ian M. Howat, and Twila Moon. Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet. Science, 320(5877):781–783, 2008. URL: https://science.sciencemag.org/content/320/5877/781, doi:10.1126/science.1153288.

34

K. M. Cuffey and W. S. B. Paterson. The Physics of Glaciers. Elsevier, 4th edition, 2010.

35

L. A. Lliboutry and P. Duval. Various isotropic and anisotropic ices found in glaciers and polar ice caps and their corresponding rheologies. Annales Geophys., 3:207–224, 1985.

36

W. S. B. Paterson and W. F. Budd. Flow parameters for ice sheet modeling. Cold Reg. Sci. Technol., 6(2):175–177, 1982.

37

Ed Bueler, Constantine Khroulev, Andy Aschwanden, Ian Joughin, and Ben E. Smith. Modeled and observed fast flow in the Greenland ice sheet. submitted, 2009.

38

A. C. Fowler. Mathematical Models in the Applied Sciences. Cambridge Univ. Press, 1997.

39

K. Hutter. Theoretical Glaciology. D. Reidel, 1983.

40

L. W. Morland. Unconfined ice-shelf flow. In C. J. van der Veen and J. Oerlemans, editors, Dynamics of the West Antarctic ice sheet, 99–116. Kluwer Academic Publishers, 1987.

41

H. Blatter. Velocity and stress fields in grounded glaciers: a simple algorithm for including deviatoric stress gradients. J. Glaciol., 41(138):333–344, 1995.

42

Frank Pattyn. A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. J. Geophys. Res., 2003. doi:10.1029/2002JB002329.

43

W. S. B. Paterson. The Physics of Glaciers. Pergamon, 3rd edition, 1994.

44

R. Greve. A continuum–mechanical formulation for shallow polythermal ice sheets. Phil. Trans. Royal Soc. London A, 355:921–974, 1997.

45

P. Huybrechts and J. de Wolde. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Climate, 12:2169–2188, 1999.

46

A. J. Payne and D. J. Baldwin. Analysis of ice–flow instabilities identified in the EISMINT intercomparison exercise. Ann. Glaciol., 30:204–210, 2000.

47

Andrew C. Fowler. Modelling the flow of glaciers and ice sheets. In Brian Straughan and others, editors, Continuum Mechanics and Applications in Geophysics and the Environment, 201–221. Springer, 2001.

48

L. W. Morland and R. Zainuddin. Plane and radial ice-shelf flow with prescribed temperature profile. In C. J. van der Veen and J. Oerlemans, editors, Dynamics of the West Antarctic ice sheet, 117–140. Kluwer Academic Publishers, 1987.

49

M. Truffer and K. Echelmeyer. Of isbrae and ice streams. Ann. Glaciol., 36(1):66–72, 2003.

50

J. L. Bamber, D. G. Vaughan, and I. Joughin. Widespread complex flow in the interior of the Antarctic ice sheet. Science, 287:1248–1250, 2000.

51

N. Golledge, C. Fogwill, A. Mackintosh, and K. Buckley. Dynamics of the Last Glacial Maximum Antarctic ice-sheet and its response to ocean forcing. Proc. Nat. Acad. Sci., 109(40):16052–16056, 2012. doi:10.1073/pnas.1205385109.

52

M. A. Martin, R. Winkelmann, M. Haseloff, T. Albrecht, E. Bueler, C. Khroulev, and A. Levermann. The Potsdam Parallel Ice Sheet Model (PISM-PIK) –Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet. The Cryosphere, 5:727–740, 2011.

53

D. Pollard and R. M. DeConto. A coupled ice-sheet/ice-shelf/sediment model applied to a marine-margin flowline: Forced and unforced variations. In M. J. Hambrey and others, editors, Glacial Sedimentary Processes and Products. Blackwell Publishing Ltd., 2007.

54

C. Schoof and R. Hindmarsh. Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models. Quart. J. Mech. Appl. Math., 63(1):73–114, 2010. doi:10.1093/qjmam/hbp025.

55

R. Greve and H. Blatter. Dynamics of Ice Sheets and Glaciers. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, 2009.

56

Jed Brown, Barry Smith, and Aron Ahmadia. Achieving textbook multigrid efficiency for hydrostatic ice sheet flow. SIAM J. Sci. Comp., 35(2):B359–B375, 2013.

57

I. Joughin, M. Fahnestock, S. Ekholm, and R. Kwok. Balance velocities of the Greenland ice sheet. Geophysical Research Letters, 24(23):3045–3048, 1997.

58

E. Bueler, C. S. Lingle, J. A. Kallen-Brown, D. N. Covey, and L. N. Bowman. Exact solutions and verification of numerical models for isothermal ice sheets. J. Glaciol., 51(173):291–306, 2005. doi:10.3189/172756505781829449.

59

P. Huybrechts and others. The EISMINT benchmarks for testing ice-sheet models. Ann. Glaciol., 23:1–12, 1996.

60

C. Schoof. Coulomb friction and other sliding laws in a higher order glacier flow model. Math. Models Methods Appl. Sci. (M3AS), 20:157–189, 2010. doi:10.1142/S0218202510004180.

61

G. Cogley and others. Glossary of Mass-Balance and Related Terms. IACS Working Group on Mass-balance Terminology and Methods, Draft 3, 10 July, 2009. URL: https://unesdoc.unesco.org/ark:/48223/pf0000192525_eng.

62

D. R. MacAyeal, V. Rommelaere, Ph. Huybrechts, C.L. Hulbe, J. Determann, and C. Ritz. An ice-shelf model test based on the Ross ice shelf. Ann. Glaciol., 23:46–51, 1996.

63

Catherine Ritz, Vincent Rommelaere, and Christophe Dumas. Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region. J. Geophys. Res., 106(D23):31943–31964, 2001.

64

M. W. Mahaffy. A three–dimensional numerical model of ice sheets: tests on the Barnes Ice Cap, Northwest Territories. J. Geophys. Res., 81(6):1059–1066, 1976.

65

F. Saito, A. Abe-Ouchi, and H. Blatter. An improved numerical scheme to compute horizontal gradients at the ice-sheet margin: its effect on the simulated ice thickness and temperature. Ann. Glaciol., 46:87–96, 2007.

66

C. Schoof. The effect of basal topography on ice sheet dynamics. Continuum Mech. Thermodyn., 15:295–307, 2003. doi:10.1007/s00161-003-0119-3.

67

S. De La Chapelle, O. Castelnau, V. Lipenkov, and P. Duval. Dynamic recrystallization and texture development in ice as revealed by the study of deep cores in Antarctica and Greenland. J. Geophys. Res., 103(B3):5091–5105, 1998.

68

V. Lipenkov, N. I. Barkov, P. Duval, and P. Pimienta. Crystalline texture of the 2083 m ice core at Vostok Station, Antarctica. J. Glaciol., 35(1):392–398, 1989.

69

Ralf Greve. Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: Response to steady-state and transient climate scenarios. J. Climate, 10(5):901–918, 1997.

70

D. L. Goldsby and D. L. Kohlstedt. Superplastic deformation of ice: experimental observations. J. Geophys. Res., 106(M6):11017–11030, 2001.

71

Jonathan H. Tomkin. Coupling glacial erosion and tectonics at active orogens: a numerical modeling study. Journal of Geophysical Research: Earth Surface, 112(F2):, 2007. URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005JF000332, doi:10.1029/2005JF000332.

72

R. Tuminaro, Mauro Perego, I. Tezaur, A. Salinger, and Stephen Price. A matrix dependent/algebraic multigrid approach for extruded meshes with applications to ice sheet modeling. SIAM Journal on Scientific Computing, 38(5):C504–C532, 2016. doi:10.1137/15M1040839.

73

William H. Lipscomb, Stephen F. Price, Matthew J. Hoffman, Gunter R. Leguy, Andrew R. Bennett, Sarah L. Bradley, Katherine J. Evans, Jeremy G. Fyke, Joseph H. Kennedy, Mauro Perego, and others. Description and evaluation of the Community Ice Sheet Model (CISM) v2.1. Geoscientific Model Development, 2019. doi:10.5194/gmd-12-387-2019.

74

K. W. Morton and D. F. Mayers. Numerical Solutions of Partial Differential Equations: An Introduction. Cambridge University Press, 2nd edition, 2005.

75

Matthew J. Hoffman, Mauro Perego, Stephen F. Price, William H. Lipscomb, Tong Zhang, Douglas Jacobsen, Irina Tezaur, Andrew G. Salinger, Raymond Tuminaro, and Luca Bertagna. MPAS-Albany land ice (MALI): a variable-resolution ice sheet model for Earth system modeling using Voronoi grids. Geoscientific Model Development, 2018. doi:10.5194/gmd-11-3747-2018.

76

Stanley C. Eisenstat and Homer F. Walker. Choosing the forcing terms in an inexact newton method. SIAM Journal on Scientific Computing, 17(1):16–32, jan 1996. doi:10.1137/0917003.

77

Irina K. Tezaur, Raymond S. Tuminaro, Mauro Perego, Andrew G. Salinger, and Stephen F. Price. On the scalability of the albany/FELIX first-order stokes approximation ice sheet solver for large-scale simulations of the Greenland and antarctic ice sheets. Procedia Computer Science, 51:2026–2035, 2015. doi:10.1016/j.procs.2015.05.467.

78

E. Bueler and J. Brown. On exact solutions and numerics for cold, shallow, and thermocoupled ice sheets. preprint \texttt arXiv:physics/0610106, 2006.

79

R. Hooke. Flow law for polycrystalline ice in glaciers: comparison of theoretical predictions, laboratory data, and field measurements. Rev. Geophys. Space. Phys., 19(4):664–672, 1981.

80

A. Aschwanden and H. Blatter. Mathematical modeling and numerical simulation of polythermal glaciers. J. Geophys. Res., 2009. F01027. doi:10.1029/2008JF001028.

81

Andreas Born. Tracer transport in an isochronal ice-sheet model. Journal of Glaciology, 63(237):22–38, oct 2016. doi:10.1017/jog.2016.111.

82

A. Born and A. Robinson. Modeling the Greenland englacial stratigraphy. The Cryosphere, 15(9):4539–4556, 2021. doi:10.5194/tc-15-4539-2021.

83

Paul D. Bons, Daniela Jansen, Felicitas Mundel, Catherine C. Bauer, Tobias Binder, Olaf Eisen, Mark W. Jessell, Maria-Gema Llorens, Florian Steinbach, Daniel Steinhage, and Ilka Weikusat. Converging flow and anisotropy cause large-scale folding in Greenland's ice sheet. Nature Communications, apr 2016. doi:10.1038/ncomms11427.

84

G. J.-M. C. Leysinger Vieli, C. Mart\'ın, R. C. A. Hindmarsh, and M. P. Lüthi. Basal freeze-on generates complex ice-sheet stratigraphy. Nature Communications, nov 2018. doi:10.1038/s41467-018-07083-3.

85

A. Payne. EISMINT: Ice sheet model intercomparison exercise phase two. Proposed simplified geometry experiments. 1997. URL: https://web.archive.org/web/20220119191557/http://homepages.vub.ac.be/~phuybrec/eismint/thermo-descr.pdf.

86

R. Calov, R. Greve, A. Abe-Ouchi, E. Bueler, P. Huybrechts, J. V. Johnson, F. Pattyn, D. Pollard, C. Ritz, F. Saito, and L. Tarasov. Results from the ice sheet model intercomparison project—Heinrich event intercomparison (ISMIP HEINO). J. Glaciol, 56(197):371–383, 2010.

87

C. Schoof. Variational methods for glacier flow over plastic till. J. Fluid Mech., 555:299–320, 2006.

88

Lucas K Zoet and Neal R Iverson. A slip law for glaciers on deformable beds. Science, 368(6486):76–78, 2020.

89

P Fretwell, Hamish D Pritchard, David G Vaughan, JL Bamber, NE Barrand, R Bell, C Bianchi, RG Bingham, DD Blankenship, G Casassa, and others. Bedmap2: improved ice bed, surface and thickness datasets for antarctica. The Cryosphere, 7:375–393, 2013.

90

Torsten Albrecht, Ricarda Winkelmann, and Anders Levermann. Glacial-cycle simulations of the antarctic ice sheet with the parallel ice sheet model (pism)–part 1: boundary conditions and climatic forcing. Cryosphere, 14(2):599–632, 2020.

91

E. Bueler and W. van Pelt. Mass-conserving subglacial hydrology in the parallel ice sheet model version 0.6. Geoscientific Model Development, 8(6):1613–1635, 2015. doi:10.5194/gmd-8-1613-2015.

92

D Pollard and RM DeConto. A simple inverse method for the distribution of basal sliding coefficients under ice sheets, applied to antarctica. The Cryosphere, 6(5):953, 2012.

93

S. Tulaczyk, W. B. Kamb, and H. F. Engelhardt. Basal mechanics of Ice Stream B, West Antarctica 2. Undrained plastic bed model. J. Geophys. Res., 105(B1):483–494, 2000.

94

M. Siegert, A. Le Brocq, and A. Payne. Hydrological connections between Antarctic subglacial lakes, the flow of water beneath the East Antarctic Ice Sheet and implications for sedimentary processes, pages 3–10. Wiley-Blackwell, Malden, MA, USA, 2007.

95

C. Schoof, I. J. Hewitt, and M. A. Werder. Flotation and free surface flow in a model for subglacial drainage. Part I: Distributed drainage. J. Fluid Mech., 702:126–156, 2012.

96

C. S. Lingle and J. A. Clark. A numerical model of interactions between a marine ice sheet and the solid earth: Application to a West Antarctic ice stream. J. Geophys. Res., 90(C1):1100–1114, 1985.

97

Ralf Greve. Glacial isostasy: Models for the response of the Earth to varying ice loads. In Brian Straughan and others, editors, Continuum Mechanics and Applications in Geophysics and the Environment, 307–325. Springer, 2001.

98

T. Albrecht, M. Martin, M. Haseloff, R. Winkelmann, and A. Levermann. Parameterization for subgrid-scale motion of ice-shelf calving fronts. The Cryosphere, 5:35–44, 2011.

99

A. Levermann, T. Albrecht, R. Winkelmann, M. A. Martin, M. Haseloff, and I. Joughin. Kinematic first-order calving law implies potential for abrupt ice-shelf retreat. The Cryosphere, 6:273–286, 2012. doi:10.5194/tc-6-273-2012.

100

R. Winkelmann, A. Levermann, K. Frieler, and M.A. Martin. Increased future ice discharge from antarctica owing to higher snowfall. Nature, 492:239–242, 2012.

101

J. Feldmann, T. Albrecht, C. Khroulev, F. Pattyn, and A. Levermann. Resolution-dependent performance of grounding line motion in a shallow model compared to a full-Stokes model according to the MISMIP3d intercomparison. J. Glaciol., 60(220):353–360, 2014. doi:10.3189/2014JoG13J093.

102

R. M. Gladstone, A. J. Payne, and S. L. Cornford. Parameterising the grounding line in flow-line ice sheet models. The Cryosphere, 4:605–619, 2010. doi:10.5194/tc-4-605-2010.

103

M. Morlighem, J. Bondzio, H. Seroussi, E. Rignot, E. Larour, A. Humbert, and S. Rebuffi. Modeling of Store Gletscher's calving dynamics, West Greenland, in response to ocean thermal forcing. Geophysical Research Letters, pages n/a–n/a, 2016. URL: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GL067695, doi:10.1002/2016GL067695.

104

Rémy Mercenier, Martin P. Lüthi, and Andreas Vieli. Calving relation for tidewater glaciers based on detailed stress field analysis. The Cryosphere, 12(2):721–739, feb 2018. doi:10.5194/tc-12-721-2018.

105

J. M. Amundson, M. Fahnestock, M. Truffer, J. Brown, M. P. Lüthi, and R. J. Motyka. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbrae, Greenland. J. Geophys. Res., 2010. F01005. doi:10.1029/2009JF001405.

106

T. Albrecht and A. Levermann. Fracture field for large-scale ice dynamics. J. Glaciol., 58(207):165–176, 2012. doi:10.3189/2012JoG11J191.

107

Jean Lemaitre. Phenomenological aspects of damage. In A course on damage mechanics, pages 1–37. Springer, 1996.

108

CP Borstad, E Rignot, J Mouginot, and MP Schodlok. Creep deformation and buttressing capacity of damaged ice shelves: theory and application to larsen c ice shelf. The Cryosphere, 7(6):1931–1947, 2013.

109

T. Albrecht and A. Levermann. Fracture-induced softening for large-scale ice dynamics. The Cryosphere, 8(2):587–605, 2014. doi:10.5194/tc-8-587-2014.

110

Chris Borstad, Ala Khazendar, Bernd Scheuchl, Mathieu Morlighem, Eric Larour, and Eric Rignot. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant larsen b ice shelf. Geophysical Research Letters, 43(5):2027–2035, 2016.

111

R. C. A. Hindmarsh and A. J. Payne. Time–step limits for stable solutions of the ice–sheet equation. Ann. Glaciol., 23:74–85, 1996.

112

JG Cogley, R Hock, LA Rasmussen, AA Arendt, A Bauder, RJ Braithwaite, P Jansson, G Kaser, M Möller, L Nicholson, and others. Glossary of glacier mass balance and related terms. IHP-VII technical documents in hydrology, 86:965, 2011.

113

A. H. Jarosch, C. G. Schoof, and F. S. Anslow. Restoring mass conservation to shallow ice flow models over complex terrain. The Cryosphere, 7(1):229–240, 2013. doi:10.5194/tc-7-229-2013.

114

Piotr K. Smolarkiewicz. Comment on "A Positive Definite Advection Scheme Obtained by Nonlinear Renormalization of the Advective Fluxes". Monthly Weather Review, 117(11):2626 – 2632, 1989. URL: https://journals.ametsoc.org/view/journals/mwre/117/11/1520-0493_1989_117_2626_copdas_2_0_co_2.xml, doi:10.1175/1520-0493(1989)117<2626:COPDAS>2.0.CO;2.

115

E. Rignot, Y. Xu, D. Menemenlis, J. Mouginot, B. Scheuchl, X. Li, M. Morlighem, H. Seroussi, M. van den Broeke, I. Fenty, C. Cai, L. An, and B. de Fleurian. Modeling of ocean-induced ice melt rates of five west greenland glaciers over the past two decades. Geophysical Research Letters, 43(12):6374–6382, 2016. doi:10.1002/2016GL068784.

116

Ed Bueler. Lessons from the short history of ice sheet model intercomparison. The Cryosphere Discussions, 2:399–412, 2008. doi:10.5194/tcd-2-399-2008.

117

P. Halfar. On the dynamics of the ice sheets 2. J. Geophys. Res., 88(C10):6043–6051, 1983.

118

R. C. A. Hindmarsh. Thermoviscous stability of ice-sheet flows. J. Fluid Mech., 502:17–40, 2004.

119

R. C. A. Hindmarsh. Stress gradient damping of thermoviscous ice flow instabilities. J. Geophys. Res., 2006. doi:10.1029/2005JB004019.

120

F. Saito, A. Abe-Ouchi, and H. Blatter. European Ice Sheet Modelling Initiative (EISMINT) model intercomparison experiments with first-order mechanics. J. Geophys. Res., 2006. doi:10.1029/2004JF000273.

121

A. J. Payne and P. W. Dongelmans. Self–organization in the thermomechanical flow of ice sheets. J. Geophys. Res., 102(B6):12219–12233, 1997.

122

F. Pattyn and twenty others. Benchmark experiments for higher-order and full Stokes ice sheet models (ISMIP-HOM). The Cryosphere, 2:95–108, 2008.

123

O. Gagliardini and T. Zwinger. The ISMIP-HOM benchmark experiments performed using the Finite-Element code Elmer. The Cryosphere, 2(1):67–76, 2008. doi:10.5194/tc-2-67-2008.

124

Ralf Greve, Ryoji Takahama, and Reinhard Calov. Simulation of large-scale ice-sheet surges: the ISMIP-HEINO experiments. Polar Meteorol. Glaciol., 20:1–15, 2006.

125

F. Pattyn, C. Schoof, L. Perichon, and 15 others. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP. The Cryosphere, 6:573–588, 2012. doi:10.5194/tc-6-573-2012.

126

F. Pattyn, L. Perichon, G. Durand, and 25 others. Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea MISMIP3d intercomparison. J. Glaciol., 59(215):410–422, 2013.

127

C. Schoof. Marine ice-sheet dynamics. Part 1. The case of rapid sliding. J. Fluid Mech., 573:27–55, 2007.

128

D. Goldberg, D. M. Holland, and C. Schoof. Grounding line movement and ice shelf buttressing in marine ice sheets. J. Geophys. Res., 2009. doi:10.1029/2008JF001227.

129

Frank Pattyn and Tony Payne. ISMIP-HOM Ice Sheet Model Intercomparison Project: benchmark experiments for Higher-Order ice sheet Models. 2008. URL: https://frank.pattyn.web.ulb.be/ismip/welcome.html.

130

Pieter Wesseling. Principles of Computational Fluid Dynamics. Springer-Verlag, 2001.

131

P.J. Roache. Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque, New Mexico, 1998.

132

E. Bueler. An exact solution to the temperature equation in a column of ice and bedrock. preprint \texttt arXiv:0710.1314, 2007.

133

R. Sayag and M. G. Worster. Axisymmetric gravity currents of power-law fluids over a rigid horizontal surface. J. Fluid Mech., 2013. doi:10.1017/jfm.2012.545.

134

R. Sayag, S. S. Pegler, and M. G. Worster. Floating extensional flows. Physics of Fluids, 2012. doi:10.1063/1.4747184.

135

C. R. Bentley. Glaciological studies on the Ross Ice Shelf, Antarctica, 1973–1978. Antarctic Research Series, 42(2):21–53, 1984.

136

V. Rommelaere and D. R. MacAyeal. Large-scale rheology of the Ross Ice Shelf, Antarctica, computed by a control method. Ann. Glaciol., 24:43–48, 1997.

137

A. Humbert, R. Greve, and K. Hutter. Parameter sensitivity studies for the ice flow of the Ross Ice Shelf, Antarctica. J. Geophys. Res., 2005. doi:10.1029/2004JF000170.

138

A. M. Le Brocq, A. J. Payne, and A. Vieli. An improved Antarctic dataset for high resolution numerical ice sheet models (ALBMAP v1). Earth System Science Data, 2(2):247–260, 2010. doi:10.5194/essd-2-247-2010.

139

E. Rignot, J. Mouginot, and B. Scheuchl. Ice flow of the Antarctic Ice Sheet. Science, 333(6048):1427–1430, 2011. doi:10.1126/science.1208336.

140

I. Joughin, W. Abdalati, and M. Fahnestock. Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier. Nature, 432(23):608–610, 2004.

141

D. M. Holland, R. H. Thomas, B. de Young, M. H. Ribergaard, and B. Lyberth. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geoscience, 1:659–664, 2008. doi:10.1038/ngeo316.

142

M. Lüthi, M. Fahnestock, and M. Truffer. Correspondence: calving icebergs indicate a thick layer of temperate ice at the base of Jakobshavn Isbrae, Greenland. J. Glaciol., 55(191):563\,–\,566, 2009.

143

D. DellaGiustina. Regional modeling of Greenland's outlet glaciers with the Parallel Ice Sheet Model. Master's thesis, University of Alaska, Fairbanks, 2011. M.S. Computational Physics.

144

I. Joughin, B. E. Smith, I. M. Howat, T. Scambos, and T. Moon. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol., 56(197):415–430, 2010.

145

R. S. Fausto, A. P. Ahlstrom, D. Van As, C. E. Boggild, and S. J. Johnsen. A new present-day temperature parameterization for Greenland. J. Glaciol., 55(189):95–105, 2009.

146

Christina L. Hulbe and Douglas R. MacAyeal. A new numerical model of coupled inland ice sheet, ice stream, and ice shelf flow and its application to the West Antarctic Ice Sheet. J. Geophys. Res., 104(B11):25349–25366, 1999.

147

M. Lüthi, M. Funk, A. Iken, S. Gogineni, and M. Truffer. Mechanisms of fast flow in Jakobshavns Isbræ, Greenland; Part III: measurements of ice deformation, temperature and cross-borehole conductivity in boreholes to the bedrock. J. Glaciol., 48(162):369\,–\,385, 2002.

148

C. Ritz. EISMINT Intercomparison Experiment: Comparison of existing Greenland models. 1997. URL: https://web.archive.org/web/20220120054655/http://homepages.vub.ac.be/~phuybrec/eismint/greenland.html.

149

Yun Xu, Eric Rignot, Ian Fenty, Dimitris Menemenlis, and M. Mar Flexas. Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophysical Research Letters, 40(17):4648–4653, 2013. doi:10.1002/grl.50825.

150

Andy Aschwanden, Mark A Fahnestock, Martin Truffer, Douglas J Brinkerhoff, Regine Hock, Constantine Khroulev, Ruth Mottram, and S Abbas Khan. Contribution of the greenland ice sheet to sea level over the next millennium. Science Advances, 5(6):eaav9396, 2019.

151

David M Holland and Adrian Jenkins. Modeling thermodynamic ice-ocean interactions at the base of an ice shelf. Journal of Physical Oceanography, 29(8):1787–1800, 1999.

152

Greg Kopp and Judith L. Lean. A new, lower value of total solar irradiance: Evidence and climate significance. Geophysical Research Letters, jan 2011. doi:10.1029/2010gl045777.

153

Reinhard Calov and Ralf Greve. Correspondence: A semi-analytical solution for the positive degree-day model with stochastic temperature variations. J. Glaciol, 51(172):173–175, 2005.

154

I. Rogozhina and D. Rau. Vital role of daily temperature variability in surface mass balance parameterizations of the greenland ice sheet. The Cryosphere, 8:575–585, 2014. doi:10.5194/tc-8-575-2014.

155

J. Seguinot. Spatial and seasonal effects of temperature variability in a positive degree day surface melt model. J. Glaciol., 59(218):1202–1204, 2013. doi:10.3189/2013JoG13J081.

156

J. Seguinot and I. Rogozhina. Daily temperature variability predetermined by thermal conditions over ice sheet surfaces. J. Glaciol., 2014. doi:10.3189/2014JoG14J036.

157

M. Zeitz, R. Reese, J. Beckmann, U. Krebs-Kanzow, and R. Winkelmann. Impact of the melt-albedo feedback on the future evolution of the Greenland ice sheet with PISM-dEBM-simple. The Cryosphere, 15(12):5739–5764, 2021. URL: https://tc.copernicus.org/articles/15/5739/2021/, doi:10.5194/tc-15-5739-2021.

158

Uta Krebs-Kanzow, Paul Gierz, and Gerrit Lohmann. Brief communication: An ice surface melt scheme including the diurnal cycle of solar radiation. The Cryosphere, 12(12):3923–3930, dec 2018. doi:10.5194/tc-12-3923-2018.

159

Julius Garbe, Maria Zeitz, Uta Krebs-Kanzow, and Ricarda Winkelmann. The evolution of future Antarctic surface melt using PISM-dEBM-simple. The Cryosphere, 17(11):4571–4599, nov 2023. doi:10.5194/tc-17-4571-2023.

160

K. N. Liou. Introduction to Atmospheric Radiation. Elsevier Science & Technology Books, 2002. ISBN 9780080491677.

161

André L. Berger. Long-term variations of daily insolation and quaternary climatic changes. Journal of the Atmospheric Sciences, 35(12):2362–2367, dec 1978. doi:10.1175/1520-0469(1978)035<2362:ltvodi>2.0.co;2.

162

Ronald B Smith and Idar Barstad. A linear theory of orographic precipitation. Journal of the Atmospheric Sciences, 61(12):1377–1391, 2004.

163

Ronald B Smith, Idar Barstad, and Laurent Bonneau. Orographic precipitation and oregon’s climate transition. Journal of the Atmospheric Sciences, 62(1):177–191, 2005.

164

A Beckmann and H Goosse. A parameterization of ice shelf-ocean interaction for climate models. Ocean Modelling, 5(2):157–170, 2003. URL: https://linkinghub.elsevier.com/retrieve/pii/S1463500302000197.

165

Hartmut H. Hellmer, Stanley S. Jacobs, and Adrian Jenkins. Oceanic erosion of a floating Antarctic glacier in the Amundsen Sea. American Geophysical Union, 1998.

166

Dirk Olbers and Hartmut Hellmer. A box model of circulation and melting in ice shelf caverns. Ocean Dynamics, 60(1):141–153, 2010.

167

HH Hellmer and DJ Olbers. A two-dimensional model for the thermohaline circulation under an ice shelf. Antarctic Science, 1(04):325–336, 1989.

168

E. L. Lewis and R. G. Perkin. Ice pumps and their rates. Journal of Geophysical Research: Oceans, 91(C10):11756–11762, 1986. doi:10.1029/JC091iC10p11756.

169

Ronja Reese, Torsten Albrecht, Matthias Mengel, Xylar Asay-Davis, and Ricarda Winkelmann. Antarctic sub-shelf melt rates via pico. The Cryosphere, 12(6):1969–1985, 2018. doi:10.5194/tc-12-1969-2018.

170

J. Krug, G. Durand, O. Gagliardini, and J. Weiss. Modelling the impact of submarine frontal melting and ice mélange on glacier dynamics. The Cryosphere, 9(3):989–1003, may 2015. doi:10.5194/tc-9-989-2015.

171

D. Jenssen. A three–dimensional polar ice–sheet model. J. Glaciol., 18:373–389, 1977.

172

John C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Wadsworth, Pacific Grove, California, 1989.

173

Arne Foldvik and Thor Kvinge. Conditional instability of sea water at the freezing point. In Deep Sea Research and Oceanographic Abstracts, volume 21, 169–174. Elsevier, 1974.

174

Q. Wang, S. Danilov, D. Sidorenko, R. Timmermann, C. Wekerle, X. Wang, T. Jung, and J. Schröter. The Finite Element Sea ice-Ocean Model (FESOM): formulation of an unstructured-mesh ocean general circulation model. Geoscientific Model Development Discussions, 6:3893–3976, July 2013. doi:10.5194/gmdd-6-3893-2013.

175

Irina K. Tezaur, Mauro Perego, Andrew G. Salinger, Raymond S. Tuminaro, and Stephen F. Price. Albany/FELIX: a parallel, scalable and robust, finite element, first-order Stokes approximation ice sheet solver built for advanced analysis. Geoscientific Model Development, 2015. doi:10.5194/gmd-8-1197-2015.

176

Mauro Perego, Max Gunzburger, and John Burkardt. Parallel finite-element implementation for higher-order ice-sheet models. Journal of Glaciology, 58(207):76–88, 2012. doi:10.3189/2012JoG11J063.

177

John K. Dukowicz, Stephen F. Price, and William H. Lipscomb. Consistent approximations and boundary conditions for ice-sheet dynamics from a principle of least action. Journal of Glaciology, 56(197):480–496, 2010. doi:10.3189/002214310792447851.

178

H. Seroussi, M. Morlighem, E. Larour, E. Rignot, and A. Khazendar. Hydrostatic grounding line parameterization in ice sheet models. The Cryosphere, 8(6):2075–2087, 2014. doi:10.5194/tc-8-2075-2014.

179

William L. Briggs, Van Emden Henson, and Steve F. McCormick. A multigrid tutorial. SIAM, 2000.

180

C. J. van der Veen. Fundamentals of Glacier Dynamics. CRC Press, 2nd edition, 2013.


Previous