PISM, A Parallel Ice Sheet Model  stable v2.1.1 committed by Constantine Khrulev on 2024-12-04 13:36:58 -0900
exactTestsABCD.c
Go to the documentation of this file.
1 /*
2  Copyright (C) 2004-2006, 2014, 2016, 2023 Jed Brown and Ed Bueler
3 
4  This file is part of PISM.
5 
6  PISM is free software; you can redistribute it and/or modify it under the
7  terms of the GNU General Public License as published by the Free Software
8  Foundation; either version 3 of the License, or (at your option) any later
9  version.
10 
11  PISM is distributed in the hope that it will be useful, but WITHOUT ANY
12  WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
13  FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
14  details.
15 
16  You should have received a copy of the GNU General Public License
17  along with PISM; if not, write to the Free Software
18  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20 
21 #include <stdio.h>
22 #include <math.h>
23 #include <gsl/gsl_math.h> /* M_PI */
24 #include "pism/verification/tests/exactTestsABCD.h"
25 
26 #define SperA 31556926.0 /* seconds per year; 365.2422 days */
27 
28 int exactA_old(const double r, double *H, double *M) {
29  /* NOTE: t is in seconds */
30  const double L = 750000.0; /* m; distance of margin from center */
31  const double M0 = 0.3 / SperA; /* 30 cm year-1 constant accumulation */
32  const double g = 9.81; /* m/s^2; accel of gravity */
33  const double rho = 910.0; /* kg/m^3; density */
34  const double n = 3.0; /* Glen exponent */
35  const double A = 1.0E-16/SperA; /* = 3.17e-24 1/(Pa^3 s); */
36  /* (EISMINT value) flow law parameter */
37  const double Gamma = 2 * pow(rho * g,n) * A / (n+2);
38 
39  double m, p, C;
40 
41  if (r < L) {
42  m = 2.0 * n + 2.0;
43  p = 1.0 + 1.0 / n;
44  C = pow(pow(2.0, n - 1) * M0 / Gamma, 1.0 / m);
45  *H = C * pow(pow(L, p) - pow(r, p), n / m);
46  } else {
47  *H = 0.0;
48  }
49 
50  *M = M0;
51 
52  return 0;
53 }
54 
55 struct TestABCDParameters exactA(double r) {
56  struct TestABCDParameters result;
57 
58  result.error_code = exactA_old(r, &result.H, &result.M);
59 
60  return result;
61 }
62 
63 int exactB_old(const double t, const double r, double *H, double *M) {
64  /* NOTE: t and t0 are in seconds */
65  double alpha, beta, t0, Rmargin;
66  const double n = 3.0, H0 = 3600.0, R0=750000.0;
67 
68  /* lambda=0.0 case of Bueler et al (2005) family of similarity solns;
69  is Halfar (1983) soln */
70  alpha=1.0/9.0; /* alpha=(2-(n+1)*lambda)/(5*n+3)=1/9 */
71  beta=1.0/18.0; /* beta=(1+(2*n+1)*lambda)/(5*n+3)=1/18 */
72  t0=422.45*SperA; /* t0 = (beta/Gamma)
73  * pow((2n+1)/(n+1),n)*(pow(R0,n+1)/pow(H0,2n+1)) */
74 
75  Rmargin=R0*pow(t/t0,beta);
76  if (r<Rmargin)
77  *H = H0 * pow(t/t0,-alpha)
78  * pow(1.0-pow(pow(t/t0,-beta)*(r/R0), (n+1)/n), n/(2*n+1));
79  else
80  *H = 0.0;
81 
82  *M=0.0;
83  return 0;
84 }
85 
86 struct TestABCDParameters exactB(const double t, const double r) {
87  struct TestABCDParameters result;
88 
89  result.error_code = exactB_old(t, r, &result.H, &result.M);
90 
91  return result;
92 }
93 
94 int exactC_old(const double t, const double r, double *H, double *M) {
95  double lambda, alpha, beta, t0, Rmargin;
96  const double n = 3.0, H0 = 3600.0, R0=750000.0;
97 
98  lambda=5.0;
99  alpha=-1.0; /* alpha=(2-(n+1)*lambda)/(5*n+3) */
100  beta=2.0; /* beta=(1+(2*n+1)*lambda)/(5*n+3) */
101  t0=15208.0*SperA; /* t0 = (beta/Gamma)
102  * pow((2n+1)/(n+1),n)*(pow(R0,n+1)/pow(H0,2n+1)) */
103 
104  Rmargin=R0*pow(t/t0,beta);
105  if (r<Rmargin)
106  *H = H0 * pow(t/t0,-alpha)
107  * pow(1.0-pow(pow(t/t0,-beta)*(r/R0), (n+1)/n), n/(2*n+1));
108  else
109  *H = 0.0;
110 
111  if (t>0.1*SperA)
112  *M = (lambda/t)* (*H);
113  else { /* when less than 0.1 year, avoid division by time */
114  Rmargin=R0*pow(0.1*SperA/t0,beta);
115  if (r<Rmargin)
116  *M=5*H0/t0; /* constant value in disc of Rmargin radius */
117  else
118  *M=0.0;
119  }
120  return 0;
121 }
122 
123 struct TestABCDParameters exactC(const double t, const double r) {
124  struct TestABCDParameters result;
125 
126  result.error_code = exactC_old(t, r, &result.H, &result.M);
127 
128  return result;
129 }
130 
131 int exactD_old(const double t, const double rin, double *H, double *M) {
132 
133  /* parameters describing extent of sheet: */
134  const double H0=3600.0; /* m */
135  const double L=750000.0; /* m */
136  /* parameters for perturbation: */
137  const double Tp=5000.0*SperA; /* s */
138  const double Cp=200.0; /* m */
139  /* fundamental physical constants */
140  const double g=9.81; /* m/s^2; accel of gravity */
141  /* ice properties; parameters which appear in constitutive relation: */
142  const double rho=910.0; /* kg/m^3; density */
143  const double n=3.0; /* Glen exponent */
144  const double A=1.0E-16/SperA; /* = 3.17e-24 1/(Pa^3 s); */
145  /* (EISMINT value) flow law parameter */
146 
147  double r=rin;
148  double Gamma, power, s, lamhat, f, Hs, temp, C, Ms, df, ddf, chi, dchi,
149  ddchi, c1, dHs, ddHs, dH, ddH, divterms, Mc;
150 
151  if (r < 0.0) r=-r;
152 
153  if (r >= L - 0.01) {
154  *H = 0.0;
155  *M = -0.1 / SperA;
156  } else {
157  if (r < 0.01) r = 0.01; /* avoid r=0 singularity in formulas */
158 
159  /* important derived quantities */
160  Gamma = 2 * pow(rho * g,n) * A / (n+2);
161  power = n / (2*n+2);
162  s = r/L;
163 
164  /* compute H from analytical steady state Hs plus perturbation */
165  lamhat = (1+1/n)*s - (1/n) + pow(1-s,1+1/n) - pow(s,1+1/n);
166  if ((r>0.3*L) && (r<0.9*L)) f = pow(cos(M_PI*(r-0.6*L)/(0.6*L)) ,2.0);
167  else f = 0.0;
168  Hs = (H0 / pow(1-1/n,power)) * pow(lamhat,power);
169  *H = Hs + Cp * sin(2.0*M_PI*t/Tp) * f;
170 
171  /* compute steady part of accumulation */
172  temp = pow(s,1/n) + pow(1-s,1/n) - 1;
173  C = Gamma * pow(H0,2*n+2) / pow(2.0 * L * (1-1/n),n);
174  Ms = (C/r) * pow(temp,n-1)
175  * (2*pow(s,1/n) + pow(1-s,(1/n)-1) * (1 - 2*s) - 1);
176 
177  /* derivs of H */
178  if ((r>0.3*L) && (r<0.9*L)) {
179  df = -(M_PI/(0.6*L)) * sin(M_PI*(r-0.6*L)/(0.3*L));
180  ddf = -(M_PI*M_PI/(0.18*L*L)) * cos(M_PI*(r-0.6*L)/(0.3*L));
181  chi = (4.0/3.0)*s - 1.0/3.0 + pow(1-s,4.0/3.0) - pow(s,4.0/3.0);
182  dchi = -(4.0/(3.0*L)) * (pow(s,1.0/3.0) + pow(1-s,1.0/3.0) - 1);
183  ddchi = -(4.0/(9.0*L*L)) * (pow(s,-2.0/3.0) - pow(1-s,-2.0/3.0));
184  c1 = (3.0*H0) / (8.0*pow(2.0/3.0,3.0/8.0));
185  dHs = c1 * pow(chi,-5.0/8.0) * dchi;
186  ddHs = c1 * ((-5.0/8.0) * pow(chi,-13.0/8.0) * dchi * dchi
187  + pow(chi,-5.0/8.0) * ddchi);
188  dH = dHs + Cp * sin(2.0*M_PI*t/Tp) * df;
189  ddH = ddHs + Cp * sin(2.0*M_PI*t/Tp) * ddf;
190  divterms = Gamma * pow(*H,4.) * dH * dH
191  * ((1.0/r) * (*H) * dH + 5.0 * dH * dH + 3.0 * (*H) * ddH);
192  Mc = (2.0*M_PI*Cp/Tp) * cos(2.0*M_PI*t/Tp) * f - Ms - divterms;
193  } else {
194  Mc = 0.0;
195  }
196 
197  /* actual calculate total M */
198  *M = Ms + Mc;
199  }
200  return 0;
201 }
202 
203 struct TestABCDParameters exactD(const double t, const double r) {
204  struct TestABCDParameters result;
205 
206  result.error_code = exactD_old(t, r, &result.H, &result.M);
207 
208  return result;
209 }
const double H0
Definition: exactTestK.c:37
static const double L
Definition: exactTestL.cc:40
#define g
Definition: exactTestM.c:34
#define n
Definition: exactTestM.c:37
#define rho
Definition: exactTestM.c:35
int exactD_old(const double t, const double rin, double *H, double *M)
#define SperA
int exactB_old(const double t, const double r, double *H, double *M)
struct TestABCDParameters exactB(const double t, const double r)
struct TestABCDParameters exactD(const double t, const double r)
int exactC_old(const double t, const double r, double *H, double *M)
int exactA_old(const double r, double *H, double *M)
struct TestABCDParameters exactA(double r)
struct TestABCDParameters exactC(const double t, const double r)
Germ chi(unsigned int k, const QuadPoint &pt)
Linear basis functions on the interval [-1, -1].
Definition: FEM.cc:29
static const double c1
Definition: exactTestP.cc:44
const int C[]
Definition: ssafd_code.cc:44