Loading [MathJax]/jax/output/HTML-CSS/config.js
PISM, A Parallel Ice Sheet Model 2.2.2-d6b3a29ca committed by Constantine Khrulev on 2025-03-28
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
ColumnInterpolation.cc
Go to the documentation of this file.
1/* Copyright (C) 2014, 2015, 2021, 2022, 2023, 2025 PISM Authors
2 *
3 * This file is part of PISM.
4 *
5 * PISM is free software; you can redistribute it and/or modify it under the
6 * terms of the GNU General Public License as published by the Free Software
7 * Foundation; either version 3 of the License, or (at your option) any later
8 * version.
9 *
10 * PISM is distributed in the hope that it will be useful, but WITHOUT ANY
11 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
12 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
13 * details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with PISM; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19
20#include "pism/util/ColumnInterpolation.hh"
21#include <algorithm> // for max, min
22#include <cmath> // for fabs
23#include <cstddef>
24
25namespace pism {
26
27ColumnInterpolation::ColumnInterpolation(const std::vector<double> &new_z_coarse,
28 const std::vector<double> &new_z_fine)
29 : m_z_fine(new_z_fine), m_z_coarse(new_z_coarse) {
31}
32
33std::vector<double> ColumnInterpolation::coarse_to_fine(const std::vector<double> &input,
34 unsigned int k_max_result) const {
35 std::vector<double> result(Mz_fine());
36 coarse_to_fine(input.data(), k_max_result, result.data());
37 return result;
38}
39
40void ColumnInterpolation::coarse_to_fine(const double *input,
41 unsigned int k_max_result,
42 double *result) const {
44 coarse_to_fine_linear(input, k_max_result, result);
45 } else {
46 coarse_to_fine_quadratic(input, k_max_result, result);
47 }
48}
49
50void ColumnInterpolation::coarse_to_fine_linear(const double *input, unsigned int k_max_result,
51 double *result) const {
52 const unsigned int Mzfine = Mz_fine();
53 const unsigned int Mzcoarse = Mz_coarse();
54
55 for (unsigned int k = 0; k < Mzfine; ++k) {
56 if (k > k_max_result) {
57 result[k] = input[m_coarse2fine[k]];
58 continue;
59 }
60
61 unsigned int m = m_coarse2fine[k];
62
63 // extrapolate (if necessary):
64 if (m == Mzcoarse - 1) {
65 result[k] = input[Mzcoarse - 1];
66 continue;
67 }
68
69 const double incr = (m_z_fine[k] - m_z_coarse[m]) / (m_z_coarse[m + 1] - m_z_coarse[m]);
70 result[k] = input[m] + incr * (input[m + 1] - input[m]);
71 }
72}
73
74void ColumnInterpolation::coarse_to_fine_quadratic(const double *input, unsigned int k_max_result,
75 double *result) const {
76 unsigned int k = 0, m = 0;
77 const unsigned int Mz = Mz_coarse();
78 for (m = 0; m < Mz - 2 and k <= k_max_result; ++m) {
79
80 const double
81 z0 = m_z_coarse[m],
82 z1 = m_z_coarse[m + 1],
83 dz_inv = m_constants[3 * m + 0], // = 1.0 / (z1 - z0)
84 dz1_inv = m_constants[3 * m + 1], // = 1.0 / (z2 - z0)
85 dz2_inv = m_constants[3 * m + 2], // = 1.0 / (z2 - z1)
86 f0 = input[m],
87 f1 = input[m + 1],
88 f2 = input[m + 2];
89
90 const double
91 d1 = (f1 - f0) * dz_inv,
92 d2 = (f2 - f0) * dz1_inv,
93 b = (d2 - d1) * dz2_inv,
94 a = d1 - b * (z1 - z0),
95 c = f0;
96
97 for (; m_z_fine[k] < z1 and k <= k_max_result; ++k) {
98 const double s = m_z_fine[k] - z0;
99
100 result[k] = s * (a + b * s) + c;
101 }
102 } // m-loop
103
104 // check if we got to the end of the m-loop and use linear
105 // interpolation between the remaining 2 coarse levels
106 if (m == Mz - 2) {
107 const double
108 z0 = m_z_coarse[m],
109 z1 = m_z_coarse[m + 1],
110 f0 = input[m],
111 f1 = input[m + 1],
112 lambda = (f1 - f0) / (z1 - z0);
113
114 for (; m_z_fine[k] < z1; ++k) {
115 result[k] = f0 + lambda * (m_z_fine[k] - z0);
116 }
117 }
118
119 // fill the rest using constant extrapolation
120 const double f0 = input[Mz - 1];
121 for (; k <= k_max_result; ++k) {
122 result[k] = f0;
123 }
124}
125
126std::vector<double> ColumnInterpolation::fine_to_coarse(const std::vector<double> &input) const {
127 std::vector<double> result(Mz_coarse());
128 fine_to_coarse(input.data(), result.data());
129 return result;
130}
131
132void ColumnInterpolation::fine_to_coarse(const double *input, double *result) const {
133 const unsigned int N = Mz_coarse();
134
135 for (unsigned int k = 0; k < N - 1; ++k) {
136 const auto &m = m_fine2coarse[k];
137
138 const double increment = (m_z_coarse[k] - m_z_fine[m]) / (m_z_fine[m + 1] - m_z_fine[m]);
139 result[k] = input[m] + increment * (input[m + 1] - input[m]);
140 }
141
142 result[N - 1] = input[m_fine2coarse[N - 1]];
143}
144
145unsigned int ColumnInterpolation::Mz_coarse() const {
146 return m_z_coarse.size();
147}
148
149unsigned int ColumnInterpolation::Mz_fine() const {
150 return m_z_fine.size();
151}
152
154 return m_z_fine[1] - m_z_fine[0];
155}
156
157const std::vector<double>& ColumnInterpolation::z_fine() const {
158 return m_z_fine;
159}
160
161const std::vector<double>& ColumnInterpolation::z_coarse() const {
162 return m_z_coarse;
163}
164
165/*!
166 * Given two 1D grids, `z_input` and `z_output`, for each `z_output`
167 * index `k` we find an index `m` so that
168 *
169 * `z_input[m] < z_output[k] <= z_input[m+1]`
170 *
171 * In other words, we look for two consecutive points in the input
172 * grid that bracket a point in the output grid.
173 *
174 * This function sets `result[k] = m`. This information is then used
175 * to interpolate from the grid defined by `z_input` to the one
176 * defined by `z_output`.
177 *
178 * We use constant extrapolation outside the range defined by `z_input`.
179 */
180static std::vector<unsigned int> init_interpolation_indexes(const std::vector<double>& z_input,
181 const std::vector<double>& z_output) {
182 std::vector<unsigned int> result(z_output.size());
183
184 unsigned int m = 0;
185 for (unsigned int k = 0; k < z_output.size(); ++k) {
186
187 if (z_output[k] <= z_input.front()) {
188 result[k] = 0;
189 continue;
190 }
191
192 if (z_output[k] >= z_input.back()) {
193 result[k] = z_input.size() - 1;
194 continue;
195 }
196
197 while (z_input[m + 1] < z_output[k]) {
198 ++m;
199 }
200
201 result[k] = m;
202 }
203
204 return result;
205}
206
208
209 // coarse -> fine
211
212 // fine -> coarse
214
215 // decide if we're going to use linear or quadratic interpolation
216 double dz_min = m_z_coarse.back();
217 double dz_max = 0.0;
218 for (unsigned int k = 0; k < Mz_coarse() - 1; ++k) {
219 const double dz = m_z_coarse[k + 1] - m_z_coarse[k];
220 dz_min = std::min(dz, dz_min);
221 dz_max = std::max(dz, dz_max);
222 }
223
224 const double eps = 1.0e-8;
225 m_use_linear_interpolation = (fabs(dz_max - dz_min) <= eps);
226
227 // initialize quadratic interpolation constants
229 size_t N = Mz_coarse() - 2;
230 m_constants.resize(3 * N);
231 for (unsigned int m = 0; m < N; ++m) {
232 const double
233 z0 = m_z_coarse[m],
234 z1 = m_z_coarse[m + 1],
235 z2 = m_z_coarse[m + 2];
236 m_constants[3 * m + 0] = 1.0 / (z1 - z0);
237 m_constants[3 * m + 1] = 1.0 / (z2 - z0);
238 m_constants[3 * m + 2] = 1.0 / (z2 - z1);
239 }
240 }
241
242}
243
244} // end of namespace pism
std::vector< double > m_z_fine
std::vector< double > coarse_to_fine(const std::vector< double > &input, unsigned int k_max_result) const
void coarse_to_fine_linear(const double *input, unsigned int k_max_result, double *result) const
std::vector< double > m_z_coarse
const std::vector< double > & z_coarse() const
std::vector< unsigned int > m_coarse2fine
std::vector< double > m_constants
std::vector< unsigned int > m_fine2coarse
void coarse_to_fine_quadratic(const double *input, unsigned int k_max_result, double *result) const
ColumnInterpolation(const std::vector< double > &z_coarse, const std::vector< double > &z_fine)
const std::vector< double > & z_fine() const
void coarse_to_fine(const double *input, unsigned int k_max_result, double *result) const
void fine_to_coarse(const double *input, double *result) const
static const double z0
Definition exactTestL.cc:42
static const double k
Definition exactTestP.cc:42
static std::vector< unsigned int > init_interpolation_indexes(const std::vector< double > &z_input, const std::vector< double > &z_output)