Loading [MathJax]/extensions/tex2jax.js
PISM, A Parallel Ice Sheet Model 2.2.2-d6b3a29ca committed by Constantine Khrulev on 2025-03-28
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Element.hh
Go to the documentation of this file.
1/* Copyright (C) 2020, 2021, 2022, 2024 PISM Authors
2 *
3 * This file is part of PISM.
4 *
5 * PISM is free software; you can redistribute it and/or modify it under the
6 * terms of the GNU General Public License as published by the Free Software
7 * Foundation; either version 3 of the License, or (at your option) any later
8 * version.
9 *
10 * PISM is distributed in the hope that it will be useful, but WITHOUT ANY
11 * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
12 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
13 * details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with PISM; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19#ifndef PISM_ELEMENT_H
20#define PISM_ELEMENT_H
21
22#include <vector>
23#include <cassert> // assert
24
25#include <petscdmda.h> // DMDALocalInfo
26
27#include "pism/util/fem/FEM.hh"
28#include "pism/util/Vector2d.hh"
29#include <petscmat.h>
30
31
32namespace pism {
33
34class Grid;
35namespace array { class Scalar; }
36
37struct Vector3 {
38 double x, y, z;
39};
40
41namespace fem {
42
43class Quadrature;
44
45//! The mapping from global to local degrees of freedom.
46/*! Computations of residual and Jacobian entries in the finite element method are done by
47 iterating of the elements and adding the various contributions from each element. To do
48 this, degrees of freedom from the global vector of unknowns must be remapped to
49 element-local degrees of freedom for the purposes of local computation, (and the results
50 added back again to the global residual and Jacobian arrays).
51
52 An Element mediates the transfer between element-local and global degrees of freedom and
53 provides values of shape functions at quadrature points. In this implementation, the
54 global degrees of freedom are either scalars (double's) or vectors (Vector2's), one per
55 node in the Grid, and the local degrees of freedom on the element are q1::n_chi or
56 p1::n_chi (%i.e. four or three) scalars or vectors, one for each vertex of the element.
57
58 In addition to this, the Element transfers locally computed contributions to residual
59 and Jacobian matrices to their global counterparts.
60*/
61class Element {
62public:
63 ~Element() = default;
64
65 int n_chi() const {
66 return m_n_chi;
67 }
68
69 /*!
70 * `chi(q, k)` returns values and partial derivatives of the `k`-th shape function at a
71 * quadrature point `q`.
72 */
73 const Germ& chi(unsigned int q, unsigned int k) const {
74 assert(q < m_Nq);
75 assert(k < m_n_chi);
76 return m_germs[q * m_n_chi + k];
77 }
78
79 //! Number of quadrature points
80 unsigned int n_pts() const {
81 return m_Nq;
82 }
83
84 //! Weight of the quadrature point `q`
85 double weight(unsigned int q) const {
86 assert(q < m_Nq);
87 return m_weights[q];
88 }
89
90 /*! @brief Given nodal values, compute the values at quadrature points.*/
91 //! The output array `result` should have enough elements to hold values at all
92 //! quadrature points.
93 template <typename T>
94 void evaluate(const T *x, T *result) const {
95 for (unsigned int q = 0; q < m_Nq; q++) {
96 result[q] = 0.0;
97 for (unsigned int k = 0; k < m_n_chi; k++) {
98 result[q] += m_germs[q * m_n_chi + k].val * x[k];
99 }
100 }
101 }
102
103protected:
104 Element(const Grid &grid, int Nq, int n_chi, int block_size);
105 Element(const DMDALocalInfo &grid_info, int Nq, int n_chi, int block_size);
106
107 /*! @brief Add Jacobian contributions. */
108 void add_contribution(const double *K, Mat J) const;
109
110 void mark_row_invalid(unsigned int k);
111 void mark_col_invalid(unsigned int k);
112
113 DMDALocalInfo m_grid;
114
115 // pointer to a shape function
116 typedef Germ (*ShapeFunction)(unsigned int k, const QuadPoint &p);
117
118 void initialize(const double J[3][3],
120 unsigned int n_chi,
121 const std::vector<QuadPoint>& points,
122 const std::vector<double>& W);
123
124 //! grid offsets used to extract nodal values from the grid and add contributions from
125 //! an element to the residual and the Jacobian.
126 std::vector<int> m_i_offset;
127 std::vector<int> m_j_offset;
128
129 //! Number of nodes (and therefore the number of shape functions) in this particular
130 //! type of elements.
131 const unsigned int m_n_chi;
132
133 //! Indices of the current element.
134 int m_i, m_j;
135
136 //! Number of quadrature points
137 const unsigned int m_Nq;
138
139 const int m_block_size;
140
141 std::vector<Germ> m_germs;
142
143 //! Stencils for updating entries of the Jacobian matrix.
144 std::vector<MatStencil> m_row, m_col;
145
146 //! Constant for marking invalid row/columns.
147 //!
148 //! Has to be negative because MatSetValuesBlockedStencil supposedly ignores negative indexes.
149 //! Seems like it has to be negative and below the smallest allowed index, i.e. -2 and below with
150 //! the stencil of width 1 (-1 *is* an allowed index). We use -2^30 and *don't* use PETSC_MIN_INT,
151 //! because PETSC_MIN_INT depends on PETSc's configuration flags.
152 static const int m_invalid_dof = -1073741824;
153
154 //! Quadrature weights for a particular physical element
155 std::vector<double> m_weights;
156private:
158 : m_n_chi(1),
159 m_Nq(1),
160 m_block_size(1) {
161 // empty
162 }
163};
164
165class Element2 : public Element {
166public:
167
168 void reset(int i, int j);
169
170 //! Convert a local degree of freedom index `k` to a global degree of freedom index (`i`,`j`).
171 void local_to_global(unsigned int k, int &i, int &j) const {
172 i = m_i + m_i_offset[k];
173 j = m_j + m_j_offset[k];
174 }
175
176 Vector2d normal(unsigned int side) const {
177 assert(side < m_n_chi);
178 return m_normals[side];
179 }
180
181 unsigned int n_sides() const {
182 return n_chi();
183 }
184
185 double side_length(unsigned int side) const {
186 assert(side < m_n_chi);
187 return m_side_lengths[side];
188 }
189
190 using Element::evaluate;
191 /*! @brief Given nodal values, compute the values and partial derivatives at the
192 * quadrature points.*/
193 //! Output arrays should have enough elements to hold values at all quadrature points.`
194 template <typename T>
195 void evaluate(const T *x, T *vals, T *dx, T *dy) {
196 for (unsigned int q = 0; q < m_Nq; q++) {
197 vals[q] = 0.0;
198 dx[q] = 0.0;
199 dy[q] = 0.0;
200 for (unsigned int k = 0; k < m_n_chi; k++) {
201 const Germ &psi = m_germs[q * m_n_chi + k];
202#ifdef __clang_analyzer__
203 // suppress false positive Clang static analyzer warnings about x[k] below being
204 // garbage
205 [[clang::suppress]]
206#endif
207 {
208 vals[q] += psi.val * x[k];
209 dx[q] += psi.dx * x[k];
210 dy[q] += psi.dy * x[k];
211 }
212 }
213 }
214 }
215
216 /*! @brief Get nodal values of an integer mask. */
217 void nodal_values(const array::Scalar &x_global, int *result) const;
218
219 /*! @brief Extract nodal values for the element (`i`,`j`) from global array `x_global`
220 into the element-local array `result`.
221 */
222 template<typename T>
223 void nodal_values(T const* const* x_global, T* result) const {
224 for (unsigned int k = 0; k < m_n_chi; ++k) {
225 int i = 0, j = 0;
226 local_to_global(k, i, j);
227 result[k] = x_global[j][i]; // note the indexing order
228 }
229 }
230
232 /*! @brief Add the values of element-local contributions `y` to the global vector `y_global`. */
233 /*! The element-local array `local` should be an array of Nk values.
234 *
235 * Use this to add residual contributions.
236 */
237 template<typename T>
238 void add_contribution(const T *local, T** y_global) const {
239 for (unsigned int k = 0; k < m_n_chi; k++) {
240 if (m_row[k].i == m_invalid_dof) {
241 // skip rows marked as "invalid"
242 continue;
243 }
244 const int
245 i = m_row[k].i,
246 j = m_row[k].j;
247 y_global[j][i] += local[k]; // note the indexing order
248 }
249 }
250
253
254protected:
255 Element2(const Grid &grid, int Nq, int n_chi, int block_size);
256 Element2(const DMDALocalInfo &grid_info, int Nq, int n_chi, int block_size);
257
258 std::vector<Vector2d> m_normals;
259
260 std::vector<double> m_side_lengths;
261};
262
263//! Q1 element with sides parallel to X and Y axes
264class Q1Element2 : public Element2 {
265public:
266 Q1Element2(const Grid &grid, const Quadrature &quadrature);
267 Q1Element2(const DMDALocalInfo &grid_info,
268 double dx, double dy,
269 const Quadrature &quadrature);
270};
271
272//! P1 element embedded in Q1Element2
273class P1Element2 : public Element2 {
274public:
275 P1Element2(const Grid &grid, const Quadrature &quadrature, int type);
276};
277
278class Element3 : public Element {
279public:
280 using Element::evaluate;
281 /*! @brief Given nodal values, compute the values and partial derivatives at the
282 * quadrature points.*/
283 //! Output arrays should have enough elements to hold values at all quadrature points.`
284 template <typename T>
285 void evaluate(const T *x, T *vals, T *dx, T *dy, T *dz) const {
286 for (unsigned int q = 0; q < m_Nq; q++) {
287 vals[q] = 0.0;
288 dx[q] = 0.0;
289 dy[q] = 0.0;
290 dz[q] = 0.0;
291 for (unsigned int k = 0; k < m_n_chi; k++) {
292 const Germ &psi = m_germs[q * m_n_chi + k];
293 vals[q] += psi.val * x[k];
294 dx[q] += psi.dx * x[k];
295 dy[q] += psi.dy * x[k];
296 dz[q] += psi.dz * x[k];
297 }
298 }
299 }
300
301 struct GlobalIndex {
302 int i, j, k;
303 };
304
305 GlobalIndex local_to_global(int i, int j, int k, unsigned int n) const {
306 return {i + m_i_offset[n],
307 j + m_j_offset[n],
308 k + m_k_offset[n]};
309 }
310
311 GlobalIndex local_to_global(unsigned int n) const {
312 return {m_i + m_i_offset[n],
313 m_j + m_j_offset[n],
314 m_k + m_k_offset[n]};
315 }
316
317 /*! @brief Extract nodal values for the element (`i`,`j`,`k`) from global array `x_global`
318 into the element-local array `result`.
319 */
320 template<typename T>
321 void nodal_values(T const* const* const* x_global, T* result) const {
322 for (unsigned int n = 0; n < m_n_chi; ++n) {
323 auto I = local_to_global(n);
324 result[n] = x_global[I.j][I.i][I.k]; // note the STORAGE_ORDER
325 }
326 }
327
329 /*! @brief Add the values of element-local contributions `y` to the global vector `y_global`. */
330 /*! The element-local array `local` should be an array of Nk values.
331 *
332 * Use this to add residual contributions.
333 */
334 template<typename T>
335 void add_contribution(const T *local, T*** y_global) const {
336 for (unsigned int n = 0; n < m_n_chi; n++) {
337 if (m_row[n].i == m_invalid_dof) {
338 // skip rows marked as "invalid"
339 continue;
340 }
341 auto I = local_to_global(n);
342 y_global[I.j][I.i][I.k] += local[n]; // note the STORAGE_ORDER
343 }
344 }
345protected:
346 Element3(const DMDALocalInfo &grid_info, int Nq, int n_chi, int block_size);
347 Element3(const Grid &grid, int Nq, int n_chi, int block_size);
348
349 std::vector<int> m_k_offset;
350
351 int m_k;
352};
353
354//! @brief 3D Q1 element
355/* Regular grid in the x and y directions, scaled in the z direction.
356 *
357 */
358class Q1Element3 : public Element3 {
359public:
360 Q1Element3(const DMDALocalInfo &grid,
361 const Quadrature &quadrature,
362 double dx,
363 double dy,
364 double x_min,
365 double y_min);
366 Q1Element3(const Grid &grid, const Quadrature &quadrature);
367
368 void reset(int i, int j, int k, const double *z);
369
370 // return the x coordinate of node n
371 double x(int n) const {
372 return m_x_min + m_dx * (m_i + m_i_offset[n]);
373 }
374
375 // return the y coordinate of node n
376 double y(int n) const {
377 return m_y_min + m_dy * (m_j + m_j_offset[n]);
378 }
379
380 // return the z coordinate of node n
381 double z(int n) const {
382 return m_z_nodal[n];
383 }
384
387private:
388 double m_dx;
389 double m_dy;
390 double m_x_min;
391 double m_y_min;
393
394 // values of shape functions and their derivatives with respect to xi,eta,zeta at all
395 // quadrature points
396 std::vector<Germ> m_chi;
397
398 // quadrature points (on the reference element)
399 std::vector<QuadPoint> m_points;
400
401 // quadrature weights (on the reference element)
402 std::vector<double> m_w;
403};
404
405
407public:
408 Q1Element3Face(double dx, double dy, const Quadrature &quadrature);
409
410 //! Number of quadrature points
411 unsigned int n_pts() const {
412 return m_Nq;
413 }
414 double weight(unsigned int q) const {
415 assert(q < m_Nq);
416 return m_weights[q];
417 }
418
419 const double& chi(unsigned int q, unsigned int k) const {
420 assert(q < m_Nq);
421 assert(k < m_n_chi);
422 return m_chi[q * m_n_chi + k];
423 }
424
425 // outward pointing unit normal vector to an element face at the quadrature point q
426 const Vector3& normal(unsigned int q) const {
427 return m_normals[q];
428 }
429
430 // NB: here z contains nodal z coordinates for *all* nodes of the element
431 void reset(int face, const double *z);
432
433 template <typename T>
434 void evaluate(const T *x, T *result) const {
435 for (unsigned int q = 0; q < m_Nq; q++) {
436 result[q] = 0.0;
437 for (unsigned int k = 0; k < m_n_chi; k++) {
438 result[q] += m_chi[q * m_n_chi + k] * x[k];
439 }
440 }
441 }
442protected:
443 // grid spacing
444 double m_dx;
445 double m_dy;
446
447 // values of shape functions at all quadrature points and their derivatives with respect
448 // to xi, eta, zeta
449 std::vector<double> m_chi;
450
451 // quadrature points (on the reference element corresponding to a face)
452 std::vector<QuadPoint> m_points;
453
454 std::vector<Vector3> m_normals;
455
456 // quadrature weights (on the reference element corresponding to a face)
457 std::vector<double> m_w;
458
459 // quadrature weights (on the face of a physical element)
460 std::vector<double> m_weights;
461
462 // number of quadrature points
463 const unsigned int m_n_chi;
464 const unsigned int m_Nq;
465};
466
467} // end of namespace fem
468} // end of namespace pism
469
470#endif /* PISM_ELEMENT_H */
Describes the PISM grid and the distribution of data across processors.
Definition Grid.hh:290
This class represents a 2D vector field (such as ice velocity) at a certain grid point.
Definition Vector2d.hh:29
void evaluate(const T *x, T *vals, T *dx, T *dy)
Given nodal values, compute the values and partial derivatives at the quadrature points.
Definition Element.hh:195
void local_to_global(unsigned int k, int &i, int &j) const
Convert a local degree of freedom index k to a global degree of freedom index (i,j).
Definition Element.hh:171
void reset(int i, int j)
Initialize the Element to element (i, j) for the purposes of inserting into global residual and Jacob...
Definition Element.cc:196
std::vector< double > m_side_lengths
Definition Element.hh:260
double side_length(unsigned int side) const
Definition Element.hh:185
std::vector< Vector2d > m_normals
Definition Element.hh:258
void add_contribution(const T *local, T **y_global) const
Add the values of element-local contributions y to the global vector y_global.
Definition Element.hh:238
void nodal_values(T const *const *x_global, T *result) const
Extract nodal values for the element (i,j) from global array x_global into the element-local array re...
Definition Element.hh:223
void nodal_values(const array::Scalar &x_global, int *result) const
Get nodal values of an integer mask.
Definition Element.cc:185
unsigned int n_sides() const
Definition Element.hh:181
Vector2d normal(unsigned int side) const
Definition Element.hh:176
GlobalIndex local_to_global(unsigned int n) const
Definition Element.hh:311
void nodal_values(T const *const *const *x_global, T *result) const
Extract nodal values for the element (i,j,k) from global array x_global into the element-local array ...
Definition Element.hh:321
std::vector< int > m_k_offset
Definition Element.hh:349
void add_contribution(const T *local, T ***y_global) const
Add the values of element-local contributions y to the global vector y_global.
Definition Element.hh:335
GlobalIndex local_to_global(int i, int j, int k, unsigned int n) const
Definition Element.hh:305
void evaluate(const T *x, T *vals, T *dx, T *dy, T *dz) const
Given nodal values, compute the values and partial derivatives at the quadrature points.
Definition Element.hh:285
void evaluate(const T *x, T *result) const
Given nodal values, compute the values at quadrature points.
Definition Element.hh:94
int n_chi() const
Definition Element.hh:65
std::vector< int > m_i_offset
Definition Element.hh:126
void initialize(const double J[3][3], ShapeFunction f, unsigned int n_chi, const std::vector< QuadPoint > &points, const std::vector< double > &W)
Initialize shape function values and quadrature weights of a 2D physical element.
Definition Element.cc:153
std::vector< double > m_weights
Quadrature weights for a particular physical element.
Definition Element.hh:155
Germ(* ShapeFunction)(unsigned int k, const QuadPoint &p)
Definition Element.hh:116
double weight(unsigned int q) const
Weight of the quadrature point q
Definition Element.hh:85
std::vector< MatStencil > m_col
Definition Element.hh:144
const Germ & chi(unsigned int q, unsigned int k) const
Definition Element.hh:73
const unsigned int m_n_chi
Definition Element.hh:131
void add_contribution(const double *K, Mat J) const
Add Jacobian contributions.
Definition Element.cc:241
const int m_block_size
Definition Element.hh:139
std::vector< Germ > m_germs
Definition Element.hh:141
void mark_row_invalid(unsigned int k)
Mark that the row corresponding to local degree of freedom k should not be updated when inserting int...
Definition Element.cc:221
const unsigned int m_Nq
Number of quadrature points.
Definition Element.hh:137
unsigned int n_pts() const
Number of quadrature points.
Definition Element.hh:80
static const int m_invalid_dof
Definition Element.hh:152
DMDALocalInfo m_grid
Definition Element.hh:113
std::vector< MatStencil > m_row
Stencils for updating entries of the Jacobian matrix.
Definition Element.hh:144
void mark_col_invalid(unsigned int k)
Mark that the column corresponding to local degree of freedom k should not be updated when inserting ...
Definition Element.cc:227
std::vector< int > m_j_offset
Definition Element.hh:127
int m_i
Indices of the current element.
Definition Element.hh:134
The mapping from global to local degrees of freedom.
Definition Element.hh:61
P1 element embedded in Q1Element2.
Definition Element.hh:273
Q1 element with sides parallel to X and Y axes.
Definition Element.hh:264
const unsigned int m_Nq
Definition Element.hh:464
std::vector< Vector3 > m_normals
Definition Element.hh:454
double weight(unsigned int q) const
Definition Element.hh:414
unsigned int n_pts() const
Number of quadrature points.
Definition Element.hh:411
const double & chi(unsigned int q, unsigned int k) const
Definition Element.hh:419
std::vector< double > m_w
Definition Element.hh:457
std::vector< double > m_chi
Definition Element.hh:449
void evaluate(const T *x, T *result) const
Definition Element.hh:434
std::vector< QuadPoint > m_points
Definition Element.hh:452
const Vector3 & normal(unsigned int q) const
Definition Element.hh:426
std::vector< double > m_weights
Definition Element.hh:460
const unsigned int m_n_chi
Definition Element.hh:463
void reset(int face, const double *z)
Definition Element.cc:543
void reset(int i, int j, int k, const double *z)
Definition Element.cc:460
std::vector< QuadPoint > m_points
Definition Element.hh:399
double y(int n) const
Definition Element.hh:376
double m_z_nodal[q13d::n_chi]
Definition Element.hh:392
std::vector< double > m_w
Definition Element.hh:402
double z(int n) const
Definition Element.hh:381
std::vector< Germ > m_chi
Definition Element.hh:396
double x(int n) const
Definition Element.hh:371
3D Q1 element
Definition Element.hh:358
Numerical integration of finite element functions.
Definition Quadrature.hh:63
#define n
Definition exactTestM.c:37
const int n_chi
Number of shape functions on a Q1 element.
Definition FEM.hh:213
static const double k
Definition exactTestP.cc:42
double dy
Function derivative with respect to y.
Definition FEM.hh:157
double val
Function value.
Definition FEM.hh:153
double dz
Function derivative with respect to z.
Definition FEM.hh:159
double dx
Function deriviative with respect to x.
Definition FEM.hh:155
Struct for gathering the value and derivative of a function at a point.
Definition FEM.hh:151