Loading [MathJax]/extensions/tex2jax.js
PISM, A Parallel Ice Sheet Model 2.2.1-cd005eec8 committed by Constantine Khrulev on 2025-03-07
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
IPLogRatioFunctional.hh
Go to the documentation of this file.
1// Copyright (C) 2013, 2014, 2015, 2022 David Maxwell and Constantine Khroulev
2//
3// This file is part of PISM.
4//
5// PISM is free software; you can redistribute it and/or modify it under the
6// terms of the GNU General Public License as published by the Free Software
7// Foundation; either version 3 of the License, or (at your option) any later
8// version.
9//
10// PISM is distributed in the hope that it will be useful, but WITHOUT ANY
11// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
12// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
13// details.
14//
15// You should have received a copy of the GNU General Public License
16// along with PISM; if not, write to the Free Software
17// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18
19#ifndef IPLOGRATIOFUNCTIONAL_HH_HSEWI0Q8
20#define IPLOGRATIOFUNCTIONAL_HH_HSEWI0Q8
21
22#include "pism/inverse/functional/IPFunctional.hh"
23
24namespace pism {
25namespace inverse {
26
27//! Implements a functional for log-ratio errors.
28/*! This type of functional appears in [\ref Morlighemetal2010].
29 Specifically, given a reference function \f$u_{obs}=[U_i]\f$, and an
30 array::Vector \f$x=[X_i]\f$,
31 \f[
32 J(x) = c_N \sum_i W_i\left[\log\left(\frac{|X_i+U_i|^2+\epsilon^2}{|U_{i}|^2+\epsilon^2}\right)\right]^2
33 \f]
34 where \f$\epsilon\f$ is a regularizing constant and \f$[W_i]\f$ is a vector of weights.
35 The term \f$X_i+U_i\f$ appears because the argument is expected to already be in the form
36 \f$V_i-U_i\f$, where \f$v=[V_i]\f$ is some approximation of \f$[U_i]\f$ and hence the
37 integrand has the form \f$\log(|V_i|/|U_i|)\f$.
38
39 The normalization constant \f$c_N\f$ is determined implicitly by normalize().
40*/
41class IPLogRatioFunctional : public IPFunctional<array::Vector> {
42public:
43 IPLogRatioFunctional(std::shared_ptr<const Grid> grid, array::Vector &u_observed, double eps,
44 array::Scalar *weights=NULL) :
45 IPFunctional<array::Vector>(grid), m_u_observed(u_observed), m_weights(weights),
46 m_normalization(1.), m_eps(eps) {};
48
49 virtual void normalize(double scale);
50
51 virtual void valueAt(array::Vector &x, double *OUTPUT);
52 virtual void gradientAt(array::Vector &x, array::Vector &gradient);
53
54protected:
58 double m_eps;
59
60};
61
62} // end of namespace inverse
63} // end of namespace pism
64
65#endif /* end of include guard: IPLOGRATIOFUNCTIONAL_HH_HSEWI0Q8 */
Abstract base class for functions from ice model vectors to .
virtual void normalize(double scale)
Determine the normalization constant for the functional.
virtual void valueAt(array::Vector &x, double *OUTPUT)
Computes the value of the functional at the vector x.
IPLogRatioFunctional(std::shared_ptr< const Grid > grid, array::Vector &u_observed, double eps, array::Scalar *weights=NULL)
virtual void gradientAt(array::Vector &x, array::Vector &gradient)
Computes the gradient of the functional at the vector x.
Implements a functional for log-ratio errors.