PISM, A Parallel Ice Sheet Model  stable v2.1.1 committed by Constantine Khrulev on 2024-12-04 13:36:58 -0900
SSA.hh
Go to the documentation of this file.
1 // Copyright (C) 2004--2020, 2022, 2023 Jed Brown, Ed Bueler and Constantine Khroulev
2 //
3 // This file is part of PISM.
4 //
5 // PISM is free software; you can redistribute it and/or modify it under the
6 // terms of the GNU General Public License as published by the Free Software
7 // Foundation; either version 3 of the License, or (at your option) any later
8 // version.
9 //
10 // PISM is distributed in the hope that it will be useful, but WITHOUT ANY
11 // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
12 // FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
13 // details.
14 //
15 // You should have received a copy of the GNU General Public License
16 // along with PISM; if not, write to the Free Software
17 // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 
19 #ifndef _SSA_H_
20 #define _SSA_H_
21 
22 #include "pism/stressbalance/ShallowStressBalance.hh"
23 #include "pism/util/array/CellType.hh"
24 
25 namespace pism {
26 
27 class Geometry;
28 
29 namespace stressbalance {
30 
31 //! Gives an extension coefficient to maintain ellipticity of SSA where ice is thin.
32 /*!
33  The SSA is basically a nonlinear elliptic, but vector-valued, equation which
34  determines the ice velocity field from the driving stress, the basal shear
35  stress, the ice hardness, and some boundary conditions. The problem loses
36  ellipticity (coercivity) if the thickness actually goes to zero. This class
37  provides an extension coefficient to maintain ellipticity.
38 
39  More specifically, the SSA equations are
40  \f[
41  \def\ddx#1{\ensuremath{\frac{\partial #1}{\partial x}}}
42  \def\ddy#1{\ensuremath{\frac{\partial #1}{\partial y}}}
43  - 2 \ddx{}\left[\nu H \left(2 \ddx{u} + \ddy{v}\right)\right]
44  - \ddy{}\left[\nu H \left(\ddy{u} + \ddx{v}\right)\right]
45  + \tau_{(b)x} = - \rho g H \ddx{h},
46  \f]
47  and another similar equation for the \f$y\f$-component. Schoof
48  \ref SchoofStream shows that these PDEs are the variational equations for a
49  coercive functional, thus (morally) elliptic.
50 
51  The quantity \f$\nu H\f$ is the nonlinear coefficient, and conceptually it is a
52  membrane strength. This class extends \f$\nu H\f$ to have a minimum value
53  at all points. It is a class, and not just a configuration constant, because
54  setting both the thickness \f$H\f$ and the value \f$\nu H\f$ are allowed, and
55  setting each of these does not affect the value of the other.
56 */
58 public:
59  SSAStrengthExtension(const Config &c);
60 
61  void set_notional_strength(double my_nuH);
62  void set_min_thickness(double my_min_thickness);
63  double get_notional_strength() const;
64  double get_min_thickness() const;
65 private:
67 };
68 
69 //! Callback for constructing a new SSA subclass. The caller is
70 //! responsible for deleting the newly constructed SSA.
71 /*! The factory idiom gives a way to implement runtime polymorphism for the
72  choice of SSA algorithm. The factory is a function pointer that takes
73  all the arguments of an SSA constructor and returns a newly constructed instance.
74  Subclasses of SSA should provide an associated function pointer matching the
75  SSAFactory typedef */
76 class SSA;
77 typedef SSA * (*SSAFactory)(std::shared_ptr<const Grid>);
78 
79 
80 //! PISM's SSA solver.
81 /*!
82  An object of this type solves equations for the vertically-constant horizontal
83  velocity of ice that is sliding over land or is floating. The equations are, in
84  their clearest divergence form
85  \f[ - \frac{\partial T_{ij}}{\partial x_j} - \tau_{(b)i} = f_i \f]
86  where \f$i,j\f$ range over \f$x,y\f$, \f$T_{ij}\f$ is a depth-integrated viscous
87  stress tensor (%i.e. equation (2.6) in [\ref SchoofStream]).
88  These equations determine velocity in a more-or-less elliptic manner.
89  Here \f$\tau_{(b)i}\f$ are the components of the basal shear stress applied to
90  the base of the ice. The right-hand side \f$f_i\f$ is the driving shear stress,
91  \f[ f_i = - \rho g H \frac{\partial h}{\partial x_i}. \f]
92  Here \f$H\f$ is the ice thickness and \f$h\f$ is the elevation of the surface of
93  the ice. More concretely, the SSA equations are
94  \f{align*}
95  - 2 \left[\nu H \left(2 u_x + v_y\right)\right]_x
96  - \left[\nu H \left(u_y + v_x\right)\right]_y
97  - \tau_{(b)1} &= - \rho g H h_x, \\
98  - \left[\nu H \left(u_y + v_x\right)\right]_x
99  - 2 \left[\nu H \left(u_x + 2 v_y\right)\right]_y
100  - \tau_{(b)2} &= - \rho g H h_y,
101  \f}
102  where \f$u\f$ is the \f$x\f$-component of the velocity and \f$v\f$ is the
103  \f$y\f$-component of the velocity [\ref MacAyeal, \ref Morland, \ref WeisGreveHutter].
104 
105  Derived classes actually implement numerical methods to solve these equations.
106  This class is virtual, but it actually implements some helper functions believed
107  to be common to all implementations (%i.e. regular grid implementations) and it
108  provides the basic fields.
109 */
110 class SSA : public ShallowStressBalance {
111 public:
112  SSA(std::shared_ptr<const Grid> g);
113  virtual ~SSA();
114 
116 
117  virtual void update(const Inputs &inputs, bool full_update);
118 
119  void set_initial_guess(const array::Vector &guess);
120 
121  virtual std::string stdout_report() const;
122 
123  const array::Vector& driving_stress() const;
124 protected:
125  virtual void define_model_state_impl(const File &output) const;
126  virtual void write_model_state_impl(const File &output) const;
127 
128  virtual void init_impl();
129 
130  virtual DiagnosticList diagnostics_impl() const;
131 
132  virtual void compute_driving_stress(const array::Scalar &ice_thickness,
133  const array::Scalar1 &surface_elevation,
134  const array::CellType1 &cell_type,
135  const array::Scalar1 *no_model_mask,
136  array::Vector &result) const;
137 
138  virtual void solve(const Inputs &inputs) = 0;
139 
140  void extrapolate_velocity(const array::CellType1 &cell_type,
141  array::Vector1 &velocity) const;
142 
145 
146  std::string m_stdout_ssa;
147 
148  // objects used by the SSA solver (internally)
149  std::shared_ptr<petsc::DM> m_da; // dof=2 DA
150  array::Vector m_velocity_global; // global vector for solution
151 
152  // profiling
154 };
155 
156 } // end of namespace stressbalance
157 } // end of namespace pism
158 
159 #endif /* _SSA_H_ */
A class for storing and accessing PISM configuration flags and parameters.
High-level PISM I/O class.
Definition: File.hh:56
double get_notional_strength() const
Returns strength = (viscosity times thickness).
Definition: SSA.cc:61
void set_min_thickness(double my_min_thickness)
Set minimum thickness to trigger use of extension.
Definition: SSA.cc:50
SSAStrengthExtension(const Config &c)
Definition: SSA.cc:34
double get_min_thickness() const
Returns minimum thickness to trigger use of extension.
Definition: SSA.cc:66
void set_notional_strength(double my_nuH)
Set strength = (viscosity times thickness).
Definition: SSA.cc:41
Gives an extension coefficient to maintain ellipticity of SSA where ice is thin.
Definition: SSA.hh:57
void set_initial_guess(const array::Vector &guess)
Set the initial guess of the SSA velocity.
Definition: SSA.cc:385
virtual void update(const Inputs &inputs, bool full_update)
Update the SSA solution.
Definition: SSA.cc:152
virtual DiagnosticList diagnostics_impl() const
Definition: SSA.cc:402
virtual void solve(const Inputs &inputs)=0
SSA(std::shared_ptr< const Grid > g)
Definition: SSA.cc:71
virtual void compute_driving_stress(const array::Scalar &ice_thickness, const array::Scalar1 &surface_elevation, const array::CellType1 &cell_type, const array::Scalar1 *no_model_mask, array::Vector &result) const
Compute the gravitational driving stress.
Definition: SSA.cc:232
array::Vector m_velocity_global
Definition: SSA.hh:150
void extrapolate_velocity(const array::CellType1 &cell_type, array::Vector1 &velocity) const
Definition: SSA.cc:352
array::Vector m_taud
Definition: SSA.hh:144
virtual void define_model_state_impl(const File &output) const
The default (empty implementation).
Definition: SSA.cc:394
SSAStrengthExtension * strength_extension
Definition: SSA.hh:115
virtual std::string stdout_report() const
Produce a report string for the standard output.
Definition: SSA.cc:379
std::string m_stdout_ssa
Definition: SSA.hh:146
std::shared_ptr< petsc::DM > m_da
Definition: SSA.hh:149
array::CellType2 m_mask
Definition: SSA.hh:143
const array::Vector & driving_stress() const
Definition: SSA.cc:389
virtual void write_model_state_impl(const File &output) const
The default (empty implementation).
Definition: SSA.cc:398
virtual void init_impl()
Initialize a generic regular-grid SSA solver.
Definition: SSA.cc:121
PISM's SSA solver.
Definition: SSA.hh:110
const array::Vector1 & velocity() const
Get the thickness-advective 2D velocity.
Shallow stress balance (such as the SSA).
static const double g
Definition: exactTestP.cc:36
std::map< std::string, Diagnostic::Ptr > DiagnosticList
Definition: Diagnostic.hh:125