PISM, A Parallel Ice Sheet Model
stable v2.1-1-g6902d5502 committed by Ed Bueler on 2023-12-20 08:38:27 -0800
|
◆ drag_with_derivative()
Compute the drag coefficient and its derivative with respect to \( \alpha = \frac 1 2 (u_x^2 + u_y^2) \). \begin{align*} \beta &= \frac{\tau_{c}}{u_{\text{threshold}}^q}\cdot (|u|^{2})^{\frac{q-1}{2}} \\ \diff{\beta}{\frac12 |\mathbf{u}|^{2}} &= \frac{\tau_{c}}{u_{\text{threshold}}^q}\cdot \frac{q-1}{2}\cdot (|\mathbf{u}|^{2})^{\frac{q-1}{2} - 1}\cdot 2 \\ &= \frac{q-1}{|\mathbf{u}|^{2}}\cdot \beta(\mathbf{u}) \\ \end{align*} Reimplemented from pism::IceBasalResistancePlasticLaw. Definition at line 172 of file basal_resistance.cc. References pism::IceBasalResistancePlasticLaw::m_plastic_regularize, m_pseudo_q, m_pseudo_u_threshold, m_sliding_scale_factor_reduces_tauc, and pism::square(). |