PISM, A Parallel Ice Sheet Model
stable v2.1-1-g6902d5502 committed by Ed Bueler on 2023-12-20 08:38:27 -0800
|
A monotone non-negative parameterization \(\tau_c=\tau_{\rm scale}g(\zeta)\) that is approximately the identity away from small values of \(\tau_c\). More...
#include <IPDesignVariableParameterization.hh>
Public Member Functions | |
IPDesignVariableParamTruncatedIdent () | |
virtual | ~IPDesignVariableParamTruncatedIdent () |
virtual void | set_scales (const Config &config, const std::string &design_var_name) |
Initializes the scale parameters of the parameterization. More... | |
virtual void | toDesignVariable (double p, double *value, double *derivative) |
Converts from parameterization value \(\zeta\) to \(d=g(\zeta)\). More... | |
virtual void | fromDesignVariable (double d, double *OUTPUT) |
Converts from \(d\) to a parameterization value \(\zeta\) such that \(d=g(\zeta)\). More... | |
Public Member Functions inherited from pism::inverse::IPDesignVariableParameterization | |
IPDesignVariableParameterization () | |
virtual | ~IPDesignVariableParameterization () |
virtual void | convertToDesignVariable (array::Scalar &zeta, array::Scalar &d, bool communicate=true) |
Transforms a vector of \(\zeta\) values to a vector of \(d\) values. More... | |
virtual void | convertFromDesignVariable (array::Scalar &d, array::Scalar &zeta, bool communicate=true) |
Transforms a vector of \(d\) values to a vector of \(\zeta\) values. More... | |
Private Attributes | |
double | m_d0_sq |
double | m_d_eps |
Additional Inherited Members | |
Protected Attributes inherited from pism::inverse::IPDesignVariableParameterization | |
double | m_d_scale |
Value of \(d\) in PISM units that equals 1 for IPDesignVariableParameterization's units. More... | |
A monotone non-negative parameterization \(\tau_c=\tau_{\rm scale}g(\zeta)\) that is approximately the identity away from small values of \(\tau_c\).
More specifically, \(g(\zeta)\rightarrow 0\) as \(\zeta\rightarrow-\infty\) and \(g(\zeta)\approx p\) for large values of \(\zeta\). The transition from a nonlinear to an approximately linear function occurs in the neighbourhood of the parameter \(d_0\).
Definition at line 141 of file IPDesignVariableParameterization.hh.