PISM, A Parallel Ice Sheet Model  stable v2.1-1-g6902d5502 committed by Ed Bueler on 2023-12-20 08:38:27 -0800
Public Member Functions | Private Member Functions | List of all members
pism::inverse::IP_L2NormFunctional2S Class Reference

Implements a functional corresponding to (the square of) an \(L^2\) norm of a scalar valued function. More...

#include <IP_L2NormFunctional.hh>

+ Inheritance diagram for pism::inverse::IP_L2NormFunctional2S:

Public Member Functions

 IP_L2NormFunctional2S (std::shared_ptr< const Grid > grid)
 
virtual ~IP_L2NormFunctional2S ()
 
virtual void valueAt (array::Scalar &x, double *OUTPUT)
 Computes the value of the functional at the vector x. More...
 
virtual void dot (array::Scalar &a, array::Scalar &b, double *v)
 Computes the inner product \(Q(a, b)\). More...
 
virtual void gradientAt (array::Scalar &x, array::Scalar &gradient)
 Computes the gradient of the functional at the vector x. More...
 
- Public Member Functions inherited from pism::inverse::IPInnerProductFunctional< array::Scalar >
 IPInnerProductFunctional (std::shared_ptr< const Grid > grid)
 
virtual void interior_product (array::Scalar &x, array::Scalar &y)
 Computes the interior product of a vector with the IPInnerProductFunctional's underlying bilinear form. More...
 
- Public Member Functions inherited from pism::inverse::IPFunctional< array::Scalar >
 IPFunctional (std::shared_ptr< const Grid > grid)
 
virtual ~IPFunctional ()
 

Private Member Functions

 IP_L2NormFunctional2S (IP_L2NormFunctional2S const &)
 
IP_L2NormFunctional2Soperator= (IP_L2NormFunctional2S const &)
 

Additional Inherited Members

- Protected Attributes inherited from pism::inverse::IPFunctional< array::Scalar >
std::shared_ptr< const Gridm_grid
 
fem::ElementIterator m_element_index
 
fem::Q1Element2 m_element
 

Detailed Description

Implements a functional corresponding to (the square of) an \(L^2\) norm of a scalar valued function.

The functional is, in continuous terms

\[ J(f) = \int_{\Omega} f^2 \; dA \]

where \(\Omega\) is the square domain. Numerically it is implemented using Q1 finite elements.

Definition at line 35 of file IP_L2NormFunctional.hh.


The documentation for this class was generated from the following files: