Loading [MathJax]/extensions/tex2jax.js
PISM, A Parallel Ice Sheet Model 2.2.2-d6b3a29ca committed by Constantine Khrulev on 2025-03-28
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Private Member Functions | List of all members
pism::inverse::IP_L2NormFunctional2V Class Reference

Implements a functional corresponding to (the square of) an \(L^2\) norm of a vector valued function. More...

#include <IP_L2NormFunctional.hh>

+ Inheritance diagram for pism::inverse::IP_L2NormFunctional2V:

Public Member Functions

 IP_L2NormFunctional2V (std::shared_ptr< const Grid > grid)
 
virtual ~IP_L2NormFunctional2V ()
 
virtual void valueAt (array::Vector &x, double *v)
 
virtual void dot (array::Vector &a, array::Vector &b, double *v)
 Computes the inner product \(Q(a, b)\).
 
virtual void gradientAt (array::Vector &x, array::Vector &gradient)
 
- Public Member Functions inherited from pism::inverse::IPInnerProductFunctional< array::Vector >
 IPInnerProductFunctional (std::shared_ptr< const Grid > grid)
 
virtual void interior_product (array::Vector &x, array::Vector &y)
 Computes the interior product of a vector with the IPInnerProductFunctional's underlying bilinear form.
 
- Public Member Functions inherited from pism::inverse::IPFunctional< IMVecType >
 IPFunctional (std::shared_ptr< const Grid > grid)
 
virtual ~IPFunctional ()
 
virtual void valueAt (IMVecType &x, double *OUTPUT)=0
 Computes the value of the functional at the vector x.
 
virtual void gradientAt (IMVecType &x, IMVecType &gradient)=0
 Computes the gradient of the functional at the vector x.
 

Private Member Functions

 IP_L2NormFunctional2V (IP_L2NormFunctional2V const &)
 
IP_L2NormFunctional2Voperator= (IP_L2NormFunctional2V const &)
 

Additional Inherited Members

- Protected Attributes inherited from pism::inverse::IPFunctional< IMVecType >
std::shared_ptr< const Gridm_grid
 
fem::ElementIterator m_element_index
 
fem::Q1Element2 m_element
 

Detailed Description

Implements a functional corresponding to (the square of) an \(L^2\) norm of a vector valued function.

The functional is, in continuous terms

\[ J(f) = \int_{\Omega} f^2 \; dA \]

where \(\Omega\) is the square domain. Numerically it is implemented using Q1 finite elements.

Definition at line 60 of file IP_L2NormFunctional.hh.


The documentation for this class was generated from the following files: