PISM, A Parallel Ice Sheet Model
stable v2.1-1-g6902d5502 committed by Ed Bueler on 2023-12-20 08:38:27 -0800
|
◆ update()
Compute sliding velocity using a Weertman-style parameterization from [Tomkin2007], equation 5. \[ u_s = \frac{2 A_s \beta_c (\rho g H)^{n}}{N - P} \cdot |\nabla h|^{n-1} \cdot \nabla h, \] where
With these modifications and noting that \( N = \rho g H \), the formula above becomes \[ u_s = \frac{2 A_s}{1 - k} \cdot (N |\nabla h|)^{n-1} \cdot \nabla h, \] where
This parameterization is used for areas of grounded ice where the base of the ice is temperate. Implements pism::stressbalance::ShallowStressBalance. Definition at line 74 of file WeertmanSliding.cc. References pism::Geometry::cell_type, pism::ParallelSection::check(), pism::array::diff_x_p(), pism::array::diff_y_p(), pism::stressbalance::Inputs::enthalpy, pism::ParallelSection::failed(), pism::stressbalance::Inputs::geometry, pism::array::Array3D::get_column(), pism::Geometry::ice_surface_elevation, pism::Geometry::ice_thickness, pism::k, pism::Component::m_config, pism::stressbalance::ShallowStressBalance::m_EC, pism::stressbalance::ShallowStressBalance::m_flow_law, pism::Component::m_grid, pism::stressbalance::ShallowStressBalance::m_velocity, pism::Vector2d::magnitude(), and n. |