Loading [MathJax]/extensions/tex2jax.js
PISM, A Parallel Ice Sheet Model 2.2.2-d6b3a29ca committed by Constantine Khrulev on 2025-03-28
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
exactTestsFG.cc
Go to the documentation of this file.
1/*
2 Copyright (C) 2004-2008, 2014, 2015, 2016, 2023 Ed Bueler and Jed Brown and Constantine Khroulev
3
4 This file is part of PISM.
5
6 PISM is free software; you can redistribute it and/or modify it under the
7 terms of the GNU General Public License as published by the Free Software
8 Foundation; either version 3 of the License, or (at your option) any later
9 version.
10
11 PISM is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
13 FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
14 details.
15
16 You should have received a copy of the GNU General Public License
17 along with PISM; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19*/
20
21#include "pism/verification/tests/exactTestsFG.hh"
22#include <cmath> // for pow, exp, cos, sin, M_PI, fabs, sqrt
23#include <cstddef> // for size_t
24#include <stdexcept> // for runtime_error
25
26namespace pism {
27
28static double p3(double x) {
29 // p_3=x^3-3*x^2+6*x-6, using Horner's
30 return -6.0 + x*(6.0 + x*(-3.0 + x));
31}
32
33static double p4(double x) {
34 // p_4=x^4-4*x^3+12*x^2-24*x+24, using Horner's
35 return 24.0 + x*(-24.0 + x*(12.0 + x*(-4.0 + x)));
36}
37
38TestFGParameters exactFG(double t, double r, const std::vector<double> &z, double Cp) {
39
40 const double SperA = 31556926.0; // seconds per year; 365.2422 days
41
42 // parameters describing extent of sheet:
43 const double H0 = 3000.0; // m
44 const double L = 750000.0; // m
45
46 // period of perturbation; inactive in Test F:
47 const double Tp = 2000.0*SperA; // s
48
49 // fundamental physical constants
50 const double g = 9.81; // m / s^2; accel of gravity
51 const double Rgas = 8.314; // J / (mol K)
52
53 // ice properties; parameters which appear in constitutive relation:
54 const double rho = 910.0; // kg / m^3; density
55 const double k = 2.1; // J / m K s; thermal conductivity
56 const double cpheat = 2009.0; // J / kg K; specific heat capacity
57 const double n = 3.0; // Glen exponent
58
59 // next two are EISMINT II values; Paterson - Budd for T < 263
60 const double A = 3.615E-13; // Pa^-3 s^-1
61 const double Q = 6.0E4; // J / mol
62
63 // EISMINT II temperature boundary condition (Experiment F):
64 const double Ggeo = 0.042; // J / m^2 s; geo. heat flux
65 const double ST = 1.67E-5; // K m^-1
66 const double Tmin = 223.15; // K
67 const double Kcond = k / (rho*cpheat); // constant in temp equation
68
69 const size_t Mz = z.size();
70 TestFGParameters result(Mz);
71 double
72 &H = result.H,
73 &M = result.M;
74 std::vector<double>
75 &T = result.T,
76 &U = result.U,
77 &w = result.w,
78 &Sig = result.Sig,
79 &Sigc = result.Sigc;
80
81 // temporary storage
82 std::vector<double> I3(Mz);
83
84 if ((r <= 0) or (r >= L)) {
85 throw std::runtime_error("exactFG(): code and derivation assume 0 < r < L !");
86 }
87
88 // compute H from analytical steady state Hs (Test D) plus perturbation
89 const double power = n / (2*n + 2);
90 const double Hconst = H0 / pow(1 - 1 / n, power);
91 const double s = r / L;
92 const double lamhat = (1 + 1 / n)*s - (1 / n) + pow(1 - s, 1 + 1 / n) - pow(s, 1 + 1 / n);
93
94 double f = 0.0;
95 if ((r > 0.3*L) and (r < 0.9*L)) {
96 f = pow(cos(M_PI*(r - 0.6*L) / (0.6*L)) , 2.0);
97 } else {
98 f = 0.0;
99 }
100
101 const double goft = Cp*sin(2.0*M_PI*t / Tp);
102
103 H = Hconst*pow(lamhat, power) + goft*f;
104
105 // compute T = temperature
106 const double Ts = Tmin + ST*r;
107 const double nusqrt = sqrt(1 + (4.0*H*Ggeo) / (k*Ts));
108 const double nu = (k*Ts / (2.0*Ggeo))*(1 + nusqrt);
109 for (size_t i = 0; i < Mz; i++) {
110 if (z[i] < H) {
111 T[i] = Ts * (nu + H) / (nu + z[i]);
112 } else { // surface value above ice surface; matches numerical way
113 T[i] = Ts;
114 }
115 // old way: extend formula above surface: T[i] = Ts * (nu + H) / (nu + z[i]);
116 }
117
118 // compute surface slope and horizontal velocity
119 const double lamhatr = ((1 + 1 / n) / L)*(1 - pow(1 - s, 1 / n) - pow(s, 1 / n));
120
121 double fr = 0.0;
122 if ((r > 0.3*L) and (r < 0.9*L)) {
123 fr = - (M_PI / (0.6*L)) * sin(2.0*M_PI*(r - 0.6*L) / (0.6*L));
124 } else {
125 fr = 0.0;
126 }
127
128 const double Hr = Hconst * power * pow(lamhat, power - 1) * lamhatr + goft*fr; // chain rule
129 if (Hr > 0) {
130 throw std::runtime_error("exactFG(): assumes H_r negative for all 0 < r < L !");
131 }
132
133 const double mu = Q / (Rgas*Ts*(nu + H));
134 const double surfArr = exp(-Q / (Rgas*Ts));
135 const double Uconst = 2.0 * pow(rho*g, n) * A;
136 const double omega = Uconst * pow( - Hr, n) * surfArr * pow(mu, -n - 1);
137
138 for (size_t i = 0; i < Mz; i++) {
139 if (z[i] < H) {
140 I3[i] = p3(mu*H) * exp(mu*H) - p3(mu*(H - z[i])) * exp(mu*(H - z[i]));
141 U[i] = omega * I3[i];
142 } else { // surface value above ice surface; matches numerical way
143 I3[i] = p3(mu*H) * exp(mu*H) - p3(0.0); // z[i] = H case in above
144 U[i] = omega * I3[i];
145 }
146 }
147
148 // compute strain heating
149 for (size_t i = 0; i < Mz; i++) {
150 if (z[i] < H) {
151 const double Sigmu = - (Q*(nu + z[i])) / (Rgas*Ts*(nu + H));
152 Sig[i] = (Uconst*g / cpheat) * exp(Sigmu) * pow(fabs(Hr)*(H - z[i]) , n + 1);
153 } else {
154 Sig[i] = 0.0;
155 }
156 }
157
158 // compute vertical velocity
159 const double lamhatrr = ((1 + 1 / n) / (n*L*L)) * (pow(1 - s, (1 / n) - 1) - pow(s, (1 / n) - 1));
160
161 double frr = 0.0;
162 if ((r > 0.3*L) and (r < 0.9*L)) {
163 frr = - (2.0*M_PI*M_PI / (0.36*L*L)) * cos(2.0*M_PI*(r - 0.6*L) / (0.6*L));
164 } else {
165 frr = 0.0;
166 }
167
168 const double Hrr = Hconst*power*(power - 1)*pow(lamhat, power - 2.0) * pow(lamhatr, 2.0) +
169 Hconst*power*pow(lamhat, power - 1)*lamhatrr + goft*frr;
170 const double Tsr = ST;
171 const double nur = (k*Tsr / (2.0*Ggeo)) * (1 + nusqrt) + (1 / Ts) * (Hr*Ts - H*Tsr) / nusqrt;
172 const double mur = ( - Q / (Rgas*Ts*Ts*pow(nu + H, 2.0))) * (Tsr*(nu + H) + Ts*(nur + Hr));
173 const double phi = 1 / r + n*Hrr / Hr + Q*Tsr / (Rgas*Ts*Ts) - (n + 1)*mur / mu; // division by r
174 const double gam = pow(mu, n) * exp(mu*H) * (mur*H + mu*Hr) * pow(H, n);
175 for (size_t i = 0; i < Mz; i++) {
176 const double I4 = p4(mu*H) * exp(mu*H) - p4(mu*(H - z[i])) * exp(mu*(H - z[i]));
177 w[i] = omega * ((mur / mu - phi)*I4 / mu + (phi*(H - z[i]) + Hr)*I3[i] - gam*z[i]);
178 }
179
180 // compute compensatory accumulation M
181 const double I4H = p4(mu*H) * exp(mu*H) - 24.0;
182 const double divQ = - omega * (mur / mu - phi) * I4H / mu + omega * gam * H;
183 const double Ht = (Cp*2.0*M_PI / Tp) * cos(2.0*M_PI*t / Tp) * f;
184 M = Ht + divQ;
185
186 // compute compensatory heating
187 const double nut = Ht / nusqrt;
188 for (size_t i = 0; i < Mz; i++) {
189 if (z[i] < H) {
190 const double dTt = Ts * ((nut + Ht)*(nu + z[i]) - (nu + H)*nut) * pow(nu + z[i], - 2.0);
191 const double Tr = Tsr*(nu + H) / (nu + z[i])
192 + Ts * ((nur + Hr)*(nu + z[i]) - (nu + H)*nur) * pow(nu + z[i], - 2.0);
193 const double Tz = - Ts * (nu + H) * pow(nu + z[i], - 2.0);
194 const double Tzz = 2.0 * Ts * (nu + H) * pow(nu + z[i], - 3.0);
195 Sigc[i] = dTt + U[i]*Tr + w[i]*Tz - Kcond*Tzz - Sig[i];
196 } else {
197 Sigc[i] = 0.0;
198 }
199 }
200
201 return result;
202}
203
204} // end of namespace pism
const double Ts
Definition exactTestK.c:39
const double phi
Definition exactTestK.c:41
static const double L
Definition exactTestL.cc:40
#define H0
Definition exactTestM.c:39
#define n
Definition exactTestM.c:37
#define rho
Definition exactTestM.c:35
static double p4(double x)
static const double g
Definition exactTestP.cc:36
static double p3(double x)
static const double SperA
Definition exactTestP.cc:35
static const double k
Definition exactTestP.cc:42
TestFGParameters exactFG(double t, double r, const std::vector< double > &z, double Cp)
std::vector< double > U
std::vector< double > Sig
std::vector< double > Sigc
std::vector< double > w
std::vector< double > T