Loading [MathJax]/extensions/tex2jax.js
PISM, A Parallel Ice Sheet Model 2.2.2-d6b3a29ca committed by Constantine Khrulev on 2025-03-28
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
ColumnSystem.cc
Go to the documentation of this file.
1// Copyright (C) 2004-2023, 2025 PISM Authors
2//
3// This file is part of PISM.
4//
5// PISM is free software; you can redistribute it and/or modify it under the
6// terms of the GNU General Public License as published by the Free Software
7// Foundation; either version 3 of the License, or (at your option) any later
8// version.
9//
10// PISM is distributed in the hope that it will be useful, but WITHOUT ANY
11// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
12// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
13// details.
14//
15// You should have received a copy of the GNU General Public License
16// along with PISM; if not, write to the Free Software
17// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18
19#include <cmath> // fabs()
20#include <cassert>
21#include <fstream>
22#include <iostream>
23#include <cstring> // memset
24
25#include "pism/util/pism_utilities.hh"
26#include "pism/util/array/Array3D.hh"
27#include "pism/util/ColumnSystem.hh"
28
29#include "pism/util/error_handling.hh"
30#include "pism/util/ColumnInterpolation.hh"
31
32namespace pism {
33
34
35//! Allocate a tridiagonal system of maximum size max_system_size.
36/*!
37Let N = `max_system_size`. Then allocated locations are like this:
38\verbatim
39D[0] U[0] 0 0 0 ...
40L[1] D[1] U[1] 0 0 ...
41 0 L[2] D[2] U[2] 0 ...
42 0 0 L[3] D[3] U[3] ...
43\endverbatim
44with the last row
45\verbatim
460 0 ... 0 L[N-1] D[N-1]
47\endverbatim
48Thus the index into the arrays L, D, U is always the row number.
49 */
51 const std::string &prefix)
52 : m_max_system_size(max_size), m_prefix(prefix) {
53 const unsigned int huge = 1e6;
54 assert(max_size >= 1 && max_size < huge);
55
56 m_L.resize(m_max_system_size);
57 m_D.resize(m_max_system_size);
58 m_U.resize(m_max_system_size);
61}
62
63//! Zero all entries.
65#if Pism_DEBUG==1
66 memset(&m_L[0], 0, (m_max_system_size)*sizeof(double));
67 memset(&m_U[0], 0, (m_max_system_size)*sizeof(double));
68 memset(&m_D[0], 0, (m_max_system_size)*sizeof(double));
69 memset(&m_rhs[0], 0, (m_max_system_size)*sizeof(double));
70 memset(&m_work[0], 0, (m_max_system_size)*sizeof(double));
71#endif
72}
73
74//! Compute 1-norm, which is max sum of absolute values of columns.
75double TridiagonalSystem::norm1(unsigned int system_size) const {
76 assert(system_size <= m_max_system_size);
77 if (system_size == 1) {
78 return fabs(m_D[0]); // only 1x1 case is special
79 }
80 double z = fabs(m_D[0]) + fabs(m_L[1]);
81 for (unsigned int k = 1; k < system_size; k++) { // k is column index (zero-based)
82 z = std::max(z, fabs(m_U[k-1])) + fabs(m_D[k]) + fabs(m_L[k+1]);
83 }
84 z = std::max(z, fabs(m_U[system_size-2]) + fabs(m_D[system_size-1]));
85 return z;
86}
87
88
89//! Compute diagonal-dominance ratio. If this is less than one then the matrix is strictly diagonally-dominant.
90/*!
91Let \f$A = (a_{ij})\f$ be the tridiagonal matrix
92described by L, D, U for row indices 0 through `n`. The computed ratio is
93 \f[ \max_{j=1, \dots, n} \frac{|a_{j, j-1}|+|a_{j, j+1}|}{|a_{jj}|}, \f]
94where \f$a_{1, 0}\f$ and \f$a_{n, n+1}\f$ are interpreted as zero.
95
96If this is smaller than one then it is a theorem that the tridiagonal solve will
97succeed.
98
99We return -1.0 if the absolute value of any diagonal element is less than
1001e-12 of the 1-norm of the matrix.
101 */
102double TridiagonalSystem::ddratio(unsigned int system_size) const {
103 assert(system_size <= m_max_system_size);
104
105 const double eps = 1.0e-12;
106 const double scale = norm1(system_size);
107
108 if ((fabs(m_D[0]) / scale) < eps) {
109 return -1.0;
110 }
111 double z = fabs(m_U[0]) / fabs(m_D[0]);
112
113 for (unsigned int k = 1; k < system_size - 1; k++) { // k is row index (zero-based)
114 if ((fabs(m_D[k]) / scale) < eps) {
115 return -1.0;
116 }
117 const double s = fabs(m_L[k]) + fabs(m_U[k]);
118 z = std::max(z, s / fabs(m_D[k]));
119 }
120
121 if ((fabs(m_D[system_size - 1]) / scale) < eps) {
122 return -1.0;
123 }
124 z = std::max(z, fabs(m_L[system_size - 1]) / fabs(m_D[system_size - 1]));
125
126 return z;
127}
128
129//! Utility for simple ascii view of a vector (one-dimensional column) quantity.
130/*!
131Give first argument NULL to get standard out. No binary viewer.
132
133Give description string as `info` argument.
134
135Result should be executable as a Python (SciPy) script.
136
137Does not stop on non-fatal errors.
138 */
139void TridiagonalSystem::save_vector(std::ostream &output,
140 const std::vector<double> &v,
141 unsigned int system_size,
142 const std::string &variable) {
143 assert(system_size >= 1);
144
145 output << variable << " = numpy.array([";
146 for (unsigned int k = 0; k < system_size; k++) {
147 output << v[k] << ", ";
148 }
149 output << "])" << std::endl;
150}
151
152
153//! View the tridiagonal matrix.
154void TridiagonalSystem::save_matrix(std::ostream &output,
155 unsigned int system_size,
156 const std::string &variable) const {
157
158 if (system_size < 2) {
159 std::cout << "\n\n<nmax >= 2 required to view tri-diagonal matrix " << variable
160 << " ... skipping view" << std::endl;
161 return;
162 }
163
164 save_vector(output, m_U, system_size, variable + "_U");
165 save_vector(output, m_D, system_size, variable + "_D");
166 save_vector(output, m_L, system_size, variable + "_L");
167
168 // prepare to convert to a sparse matrix
169 output << variable << "_diagonals = ["
170 << variable << "_L[1:], "
171 << variable << "_D, "
172 << variable << "_U[:-1]]" << std::endl;
173 output << "import scipy.sparse" << std::endl;
174 output << variable << " = scipy.sparse.diags(" << variable << "_diagonals, [-1, 0, 1])" << std::endl;
175}
176
177
178//! View the tridiagonal system A x = b to an output stream, both A as a full matrix and b as a vector.
179void TridiagonalSystem::save_system(std::ostream &output,
180 unsigned int system_size) const {
181 save_matrix(output, system_size, m_prefix + "_A");
182 save_vector(output, m_rhs, system_size, m_prefix + "_rhs");
183}
184
185//! Write system matrix, right-hand-side, and (provided) solution into an already-named Python
186//! script.
187void TridiagonalSystem::save_system_with_solution(const std::string &filename,
188 unsigned int system_size,
189 const std::vector<double> &solution) {
190 std::ofstream output(filename.c_str());
191 output << "import numpy" << std::endl;
192 output << "# system has 1-norm = " << norm1(system_size)
193 << " and diagonal-dominance ratio = " << ddratio(system_size) << std::endl;
194
195 save_system(output, system_size);
196 save_vector(output, solution, system_size, m_prefix + "_x");
197}
198
199
200void TridiagonalSystem::solve(unsigned int system_size, std::vector<double> &result) {
201 result.resize(m_max_system_size);
202
203 solve(system_size, result.data());
204}
205
206
207//! The actual code for solving a tridiagonal system.
208/*!
209This is modified slightly from a Numerical Recipes version.
210
211Input size n is size of instance. Requires n <= TridiagonalSystem::m_max_system_size.
212
213Solution of system in x.
214 */
215void TridiagonalSystem::solve(unsigned int system_size, double *result) {
216 assert(system_size >= 1);
217 assert(system_size <= m_max_system_size);
218
219 if (m_D[0] == 0.0) {
220 throw RuntimeError(PISM_ERROR_LOCATION, "zero pivot at row 1");
221 }
222
223 double b = m_D[0];
224
225 result[0] = m_rhs[0] / b;
226 for (unsigned int k = 1; k < system_size; ++k) {
227 m_work[k] = m_U[k - 1] / b;
228
229 b = m_D[k] - m_L[k] * m_work[k];
230
231 if (b == 0.0) {
232 throw RuntimeError::formatted(PISM_ERROR_LOCATION, "zero pivot at row %d", k + 1);
233 }
234
235 result[k] = (m_rhs[k] - m_L[k] * result[k-1]) / b;
236 }
237
238 for (int k = static_cast<int>(system_size) - 2; k >= 0; --k) {
239 result[k] -= m_work[k + 1] * result[k + 1];
240 }
241}
242
243std::string TridiagonalSystem::prefix() const {
244 return m_prefix;
245}
246
247//! A column system is a kind of a tridiagonal system.
248columnSystemCtx::columnSystemCtx(const std::vector<double>& storage_grid,
249 const std::string &prefix,
250 double dx, double dy, double dt,
251 const array::Array3D &u3,
252 const array::Array3D &v3,
253 const array::Array3D &w3)
254 : m_dx(dx), m_dy(dy), m_dt(dt), m_u3(u3), m_v3(v3), m_w3(w3) {
255 assert(dx > 0.0);
256 assert(dy > 0.0);
257 assert(dt > 0.0);
258
259 init_fine_grid(storage_grid);
260
261 m_solver = new TridiagonalSystem(m_z.size(), prefix);
262
263 m_interp = new ColumnInterpolation(storage_grid, m_z);
264
265 m_u.resize(m_z.size());
266 m_v.resize(m_z.size());
267 m_w.resize(m_z.size());
268}
269
271 delete m_solver;
272 delete m_interp;
273}
274
275unsigned int columnSystemCtx::ks() const {
276 return m_ks;
277}
278
279double columnSystemCtx::dz() const {
280 return m_dz;
281}
282
283const std::vector<double>& columnSystemCtx::z() const {
284 return m_z;
285}
286
287void columnSystemCtx::fine_to_coarse(const std::vector<double> &input, int i, int j,
288 array::Array3D& output) const {
289 m_interp->fine_to_coarse(input.data(), output.get_column(i, j));
290}
291
292void columnSystemCtx::coarse_to_fine(const array::Array3D &input, int i, int j,
293 double* output) const {
294 m_interp->coarse_to_fine(input.get_column(i, j), m_ks, output);
295}
296
297void columnSystemCtx::init_fine_grid(const std::vector<double>& storage_grid) {
298 // Compute m_dz as the minimum vertical spacing in the coarse
299 // grid:
300 unsigned int Mz = storage_grid.size();
301 double Lz = storage_grid.back();
302 m_dz = Lz;
303 for (unsigned int k = 1; k < Mz; ++k) {
304 m_dz = std::min(m_dz, storage_grid[k] - storage_grid[k - 1]);
305 }
306
307 size_t Mz_fine = static_cast<size_t>(ceil(Lz / m_dz) + 1);
308 m_dz = Lz / static_cast<double>(Mz_fine - 1);
309
310 m_z.resize(Mz_fine);
311 // compute levels of the fine grid:
312 for (unsigned int k = 0; k < Mz_fine; ++k) {
313 m_z[k] = storage_grid[0] + k * m_dz;
314 }
315 // Note that it *is* allowed to go over Lz.
316}
317
319 double ice_thickness) {
320 m_i = i;
321 m_j = j;
322 m_ks = static_cast<unsigned int>(floor(ice_thickness / m_dz));
323
324 // Force m_ks to be in the allowed range.
325 if (m_ks >= m_z.size()) {
326 m_ks = m_z.size() - 1;
327 }
328
329 m_solver->reset();
330
331 // post-condition
332#if Pism_DEBUG==1
333 // check if m_ks is valid
334 if (m_ks >= m_z.size()) {
335 throw RuntimeError::formatted(PISM_ERROR_LOCATION, "ks = %d computed at i = %d, j = %d is invalid,\n"
336 "possibly because of invalid ice thickness (%f meters) or dz (%f meters).",
337 m_ks, m_i, m_j, ice_thickness, m_dz);
338 }
339#endif
340}
341
342//! Write system matrix and right-hand-side into an Python script. The file name contains ZERO_PIVOT_ERROR.
344
345 auto filename = pism::printf("%s_i%d_j%d_ZERO_PIVOT_ERROR.py",
346 m_solver->prefix().c_str(), m_i, m_j);
347
348 std::ofstream output(filename);
349 output << "# system has 1-norm = " << m_solver->norm1(M)
350 << " and diagonal-dominance ratio = " << m_solver->ddratio(M) << std::endl;
351
352 m_solver->save_system(output, M);
353}
354
355
356//! @brief Write system matrix, right-hand-side, and (provided)
357//! solution into Python script. Constructs file name from m_prefix.
358void columnSystemCtx::save_to_file(const std::vector<double> &x) {
359
360 auto filename = pism::printf("%s_i%d_j%d.py", m_solver->prefix().c_str(), m_i, m_j);
361
362 std::cout << "saving "
363 << m_solver->prefix() << " column system at (i,j)"
364 << " = (" << m_i << "," << m_j << ") to " << filename << " ...\n" << std::endl;
365
366 this->save_to_file(filename, x);
367}
368
369void columnSystemCtx::save_to_file(const std::string &filename,
370 const std::vector<double> &x) {
371 m_solver->save_system_with_solution(filename, m_z.size(), x);
372}
373
374} // end of namespace pism
void coarse_to_fine(const double *input, unsigned int k_max_result, double *result) const
void fine_to_coarse(const double *input, double *result) const
static RuntimeError formatted(const ErrorLocation &location, const char format[],...) __attribute__((format(printf
build a RuntimeError with a formatted message
void save_matrix(std::ostream &output, unsigned int system_size, const std::string &variable) const
View the tridiagonal matrix.
void save_system(std::ostream &output, unsigned int system_size) const
View the tridiagonal system A x = b to an output stream, both A as a full matrix and b as a vector.
std::vector< double > m_work
std::string prefix() const
unsigned int m_max_system_size
TridiagonalSystem(unsigned int max_size, const std::string &prefix)
Allocate a tridiagonal system of maximum size max_system_size.
void solve(unsigned int system_size, std::vector< double > &result)
double ddratio(unsigned int system_size) const
Compute diagonal-dominance ratio. If this is less than one then the matrix is strictly diagonally-dom...
double norm1(unsigned int system_size) const
Compute 1-norm, which is max sum of absolute values of columns.
static void save_vector(std::ostream &output, const std::vector< double > &v, unsigned int system_size, const std::string &variable)
Utility for simple ascii view of a vector (one-dimensional column) quantity.
std::vector< double > m_D
std::vector< double > m_U
void reset()
Zero all entries.
std::vector< double > m_L
void save_system_with_solution(const std::string &filename, unsigned int system_size, const std::vector< double > &solution)
std::vector< double > m_rhs
Virtual base class. Abstracts a tridiagonal system to solve in a column of ice and/or bedrock.
double * get_column(int i, int j)
Definition Array3D.cc:121
A virtual class collecting methods common to ice and bedrock 3D fields.
Definition Array3D.hh:33
void coarse_to_fine(const array::Array3D &input, int i, int j, double *output) const
const std::vector< double > & z() const
columnSystemCtx(const std::vector< double > &storage_grid, const std::string &prefix, double dx, double dy, double dt, const array::Array3D &u3, const array::Array3D &v3, const array::Array3D &w3)
A column system is a kind of a tridiagonal system.
void reportColumnZeroPivotErrorMFile(unsigned int M)
Write system matrix and right-hand-side into an Python script. The file name contains ZERO_PIVOT_ERRO...
void save_to_file(const std::vector< double > &x)
Write system matrix, right-hand-side, and (provided) solution into Python script. Constructs file nam...
std::vector< double > m_z
levels of the fine vertical grid
void fine_to_coarse(const std::vector< double > &input, int i, int j, array::Array3D &output) const
unsigned int m_ks
current system size; corresponds to the highest vertical level within the ice
std::vector< double > m_u
u-component of the ice velocity
void init_column(int i, int j, double ice_thickness)
unsigned int ks() const
void init_fine_grid(const std::vector< double > &storage_grid)
int m_i
current column indexes
TridiagonalSystem * m_solver
ColumnInterpolation * m_interp
std::vector< double > m_w
w-component of the ice velocity
std::vector< double > m_v
v-component of the ice velocity
#define PISM_ERROR_LOCATION
std::string printf(const char *format,...)
static const double k
Definition exactTestP.cc:42