Loading [MathJax]/extensions/tex2jax.js
PISM, A Parallel Ice Sheet Model 2.2.2-d6b3a29ca committed by Constantine Khrulev on 2025-03-28
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
GivenTH.cc
Go to the documentation of this file.
1// Copyright (C) 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025 PISM Authors
2//
3// This file is part of PISM.
4//
5// PISM is free software; you can redistribute it and/or modify it under the
6// terms of the GNU General Public License as published by the Free Software
7// Foundation; either version 2 of the License, or (at your option) any later
8// version.
9//
10// PISM is distributed in the hope that it will be useful, but WITHOUT ANY
11// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
12// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
13// details.
14//
15// You should have received a copy of the GNU General Public License
16// along with PISM; if not, write to the Free Software
17// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18
19#include <gsl/gsl_poly.h>
20#include <cassert>
21
22#include "pism/coupler/ocean/GivenTH.hh"
23#include "pism/coupler/util/options.hh"
24#include "pism/geometry/Geometry.hh"
25#include "pism/util/ConfigInterface.hh"
26#include "pism/util/Grid.hh"
27#include "pism/util/Time.hh"
28#include "pism/util/array/Forcing.hh"
29
30namespace pism {
31namespace ocean {
32
34 // coefficients of the in situ melting point temperature
35 // parameterization:
36 a[0] = -0.0575;
37 a[1] = 0.0901;
38 a[2] = -7.61e-4;
39 // coefficients of the in situ melting point potential temperature
40 // parameterization:
41 b[0] = -0.0575;
42 b[1] = 0.0921;
43 b[2] = -7.85e-4;
44
45 // FIXME: this should not be hard-wired. Eventually we should be able
46 // to use the spatially-variable top-of-the-ice temperature.
47 shelf_top_surface_temperature = -20.0; // degrees Celsius
48
49 gamma_T = config.get_number("ocean.th.gamma_T");
50 gamma_S = config.get_number("ocean.th.gamma_S");
51 water_latent_heat_fusion = config.get_number("constants.fresh_water.latent_heat_of_fusion");
52 sea_water_density = config.get_number("constants.sea_water.density");
53 sea_water_specific_heat_capacity = config.get_number("constants.sea_water.specific_heat_capacity");
54 ice_density = config.get_number("constants.ice.density");
55 ice_specific_heat_capacity = config.get_number("constants.ice.specific_heat_capacity");
56 ice_thermal_diffusivity = config.get_number("constants.ice.thermal_conductivity") / (ice_density * ice_specific_heat_capacity);
57 limit_salinity_range = config.get_flag("ocean.th.clip_salinity");
58}
59
60GivenTH::GivenTH(std::shared_ptr<const Grid> g)
61 : CompleteOceanModel(g, std::shared_ptr<OceanModel>()) {
62
63 ForcingOptions opt(*m_grid->ctx(), "ocean.th");
64
65 {
66 unsigned int buffer_size = m_config->get_number("input.forcing.buffer_size");
67
69
70 m_theta_ocean = std::make_shared<array::Forcing>(m_grid,
71 file,
72 "theta_ocean",
73 "", // no standard name
74 buffer_size,
75 opt.periodic,
76 LINEAR);
77
78 m_salinity_ocean = std::make_shared<array::Forcing>(m_grid,
79 file,
80 "salinity_ocean",
81 "", // no standard name
82 buffer_size,
83 opt.periodic,
84 LINEAR);
85 }
86
87 m_theta_ocean->metadata(0)
88 .long_name("potential temperature of the adjacent ocean")
89 .units("kelvin");
90
91 m_salinity_ocean->metadata(0)
92 .long_name("salinity of the adjacent ocean")
93 .units("g/kg");
94}
95
96void GivenTH::init_impl(const Geometry &geometry) {
97
98 m_log->message(2,
99 "* Initializing the 3eqn melting parameterization ocean model\n"
100 " reading ocean temperature and salinity from a file...\n");
101
102 ForcingOptions opt(*m_grid->ctx(), "ocean.th");
103
104 // potential temperature is required
105 m_theta_ocean->init(opt.filename, opt.periodic);
106
107 // read ocean salinity from a file if present, otherwise use a constant
108 {
110
111 auto variable_name = m_salinity_ocean->metadata().get_name();
112
113 if (input.variable_exists(variable_name)) {
114 m_salinity_ocean->init(opt.filename, opt.periodic);
115 } else {
116 double salinity = m_config->get_number("constants.sea_water.salinity", "g / kg");
117
118 m_salinity_ocean = array::Forcing::Constant(m_grid, variable_name, salinity);
119
120 m_log->message(2, " Variable '%s' not found; using constant salinity: %f (g / kg).\n",
121 variable_name.c_str(), salinity);
122 }
123 }
124
125 // read time-independent data right away:
126 if (m_theta_ocean->buffer_size() == 1 && m_salinity_ocean->buffer_size() == 1) {
127 update(geometry, time().current(), 0); // dt is irrelevant
128 }
129
130 const double
131 ice_density = m_config->get_number("constants.ice.density"),
132 water_density = m_config->get_number("constants.sea_water.density"),
133 g = m_config->get_number("constants.standard_gravity");
134
135 compute_average_water_column_pressure(geometry, ice_density, water_density, g,
137}
138
139void GivenTH::update_impl(const Geometry &geometry, double t, double dt) {
140 m_theta_ocean->update(t, dt);
141 m_salinity_ocean->update(t, dt);
142
143 m_theta_ocean->average(t, dt);
144 m_salinity_ocean->average(t, dt);
145
147
148 const array::Scalar &ice_thickness = geometry.ice_thickness;
149
152
153 array::AccessScope list{ &ice_thickness, m_theta_ocean.get(), m_salinity_ocean.get(),
154 &temperature, &mass_flux};
155
156 for (auto p = m_grid->points(); p; p.next()) {
157 const int i = p.i(), j = p.j();
158
159 double potential_temperature_celsius = (*m_theta_ocean)(i,j) - 273.15;
160
161 double
162 shelf_base_temp_celsius = 0.0,
163 shelf_base_massflux = 0.0;
164
166 (*m_salinity_ocean)(i,j),
167 potential_temperature_celsius,
168 ice_thickness(i,j),
169 &shelf_base_temp_celsius,
170 &shelf_base_massflux);
171
172 // Convert from Celsius to kelvin:
173 temperature(i,j) = shelf_base_temp_celsius + 273.15;
174 mass_flux(i,j) = shelf_base_massflux;
175 }
176
177 // convert mass flux from [m s-1] to [kg m-2 s-1]:
178 m_shelf_base_mass_flux->scale(m_config->get_number("constants.ice.density"));
179
180 const double
181 ice_density = m_config->get_number("constants.ice.density"),
182 water_density = m_config->get_number("constants.sea_water.density"),
183 g = m_config->get_number("constants.standard_gravity");
184
185 compute_average_water_column_pressure(geometry, ice_density, water_density, g,
187}
188
190 (void) t;
191
192 return MaxTimestep("ocean th");
193}
194
195//* Evaluate the parameterization of the melting point temperature.
196/** The value returned is in degrees Celsius.
197 */
199 double salinity, double ice_thickness) {
200 return c.a[0] * salinity + c.a[1] + c.a[2] * ice_thickness;
201}
202
203/** Melt rate, obtained by solving the salt flux balance equation.
204 *
205 * @param c model constants
206 * @param sea_water_salinity sea water salinity
207 * @param basal_salinity shelf base salinity
208 *
209 * @return shelf base melt rate, in [m/s]
210 */
212 double sea_water_salinity, double basal_salinity) {
213
214 return c.gamma_S * c.sea_water_density * (sea_water_salinity - basal_salinity) / (c.ice_density * basal_salinity);
215}
216
217/** @brief Compute temperature and melt rate at the base of the shelf.
218 * Based on [@ref HellmerOlbers1989] and [@ref HollandJenkins1999].
219 *
220 * See the manual for details.
221 *
222 * @param[in] constants model constants
223 * @param[in] sea_water_salinity sea water salinity
224 * @param[in] sea_water_potential_temperature sea water potential temperature
225 * @param[in] thickness ice shelf thickness
226 * @param[out] shelf_base_temperature_out resulting basal temperature
227 * @param[out] shelf_base_melt_rate_out resulting basal melt rate
228 *
229 * @return 0 on success
230 */
231void GivenTH::pointwise_update(const Constants &constants, double sea_water_salinity,
232 double sea_water_potential_temperature, double thickness,
233 double *shelf_base_temperature_out,
234 double *shelf_base_melt_rate_out) {
235
236 assert(thickness >= 0.0);
237
238 // This model works for sea water salinity in the range of [4, 40]
239 // psu. Ensure that input salinity is in this range.
240 const double
241 min_salinity = 4.0,
242 max_salinity = 40.0;
243
244 if (constants.limit_salinity_range) {
245 if (sea_water_salinity < min_salinity) {
246 sea_water_salinity = min_salinity;
247 } else if (sea_water_salinity > max_salinity) {
248 sea_water_salinity = max_salinity;
249 }
250 }
251
252 double basal_salinity = sea_water_salinity;
253 subshelf_salinity(constants, sea_water_salinity, sea_water_potential_temperature,
254 thickness, &basal_salinity);
255
256 // Clip basal salinity so that we can use the freezing point
257 // temperature parameterization to recover shelf base temperature.
258 if (constants.limit_salinity_range) {
259 if (basal_salinity <= min_salinity) {
260 basal_salinity = min_salinity;
261 } else if (basal_salinity >= max_salinity) {
262 basal_salinity = max_salinity;
263 }
264 }
265
266 *shelf_base_temperature_out = melting_point_temperature(constants, basal_salinity, thickness);
267
268 *shelf_base_melt_rate_out = shelf_base_melt_rate(constants, sea_water_salinity, basal_salinity);
269
270 // no melt if there is no ice
271 if (thickness == 0.0) {
272 *shelf_base_melt_rate_out = 0.0;
273 }
274}
275
276
277/** @brief Compute the basal salinity and make sure that it is
278 * consistent with the basal melt rate.
279 *
280 * @param[in] c constants
281 * @param[in] sea_water_salinity sea water salinity
282 * @param[in] sea_water_potential_temperature sea water potential temperature
283 * @param[in] thickness ice shelf thickness
284 * @param[out] shelf_base_salinity resulting shelf base salinity
285 *
286 * @return 0 on success
287 */
288void GivenTH::subshelf_salinity(const Constants &c, double sea_water_salinity,
289 double sea_water_potential_temperature, double thickness,
290 double *shelf_base_salinity) {
291
292 double basal_salinity = sea_water_salinity;
293
294 // first, assume that there is melt at the shelf base:
295 {
296 subshelf_salinity_melt(c, sea_water_salinity, sea_water_potential_temperature,
297 thickness, &basal_salinity);
298
299 double basal_melt_rate = shelf_base_melt_rate(c, sea_water_salinity, basal_salinity);
300
301 if (basal_melt_rate > 0.0) {
302 // computed basal melt rate is consistent with the assumption used
303 // to compute basal salinity
304 *shelf_base_salinity = basal_salinity;
305 return;
306 }
307 }
308
309 // Assuming that there is melt resulted in an inconsistent
310 // (salinity, melt_rate) pair. Assume that there is freeze-on at the base.
311 {
312 subshelf_salinity_freeze_on(c, sea_water_salinity, sea_water_potential_temperature,
313 thickness, &basal_salinity);
314
315 double basal_melt_rate = shelf_base_melt_rate(c, sea_water_salinity, basal_salinity);
316
317 if (basal_melt_rate < 0.0) {
318 // computed basal melt rate is consistent with the assumption
319 // used to compute basal salinity
320 *shelf_base_salinity = basal_salinity;
321 return;
322 }
323 }
324
325 // Both assumptions (above) resulted in inconsistencies. Revert to
326 // the "diffusion-only" case, which may be less accurate, but is
327 // generic and is always consistent.
328 {
329 subshelf_salinity_diffusion_only(c, sea_water_salinity, sea_water_potential_temperature,
330 thickness, &basal_salinity);
331
332 *shelf_base_salinity = basal_salinity;
333 }
334}
335
336/** Compute basal salinity in the basal melt case.
337 *
338 * We use the parameterization of the temperature gradient from [@ref
339 * Hellmeretal1998], equation 13:
340 *
341 * @f[ T_{\text{grad}} = -\Delta T\, \frac{\frac{\partial h}{\partial t}}{\kappa}, @f]
342 *
343 * where @f$ \Delta T @f$ is the difference between the ice
344 * temperature at the top of the ice column and its bottom:
345 * @f$ \Delta T = T^S - T^B. @f$ With this parameterization, we have
346 *
347 * @f[ Q_T^I = \rho_I\, c_{pI}\, {\frac{\partial h}{\partial t}}\, (T^S - T^B). @f]
348 *
349 * Then the coefficients of the quadratic equation for basal salinity
350 * (see pointwise_update()) are
351 *
352 * @f{align*}{
353 * A &= a_{0}\,\gamma_S\,c_{pI}-b_{0}\,\gamma_T\,c_{pW}\\
354 * B &= \gamma_S\,\left(L-c_{pI}\,\left(T^S+a_{0}\,S^W-a_{2}\,h-a_{1}\right)\right)+
355 * \gamma_T\,c_{pW}\,\left(\Theta^W-b_{2}\,h-b_{1}\right)\\
356 * C &= -\gamma_S\,S^W\,\left(L-c_{pI}\,\left(T^S-a_{2}\,h-a_{1}\right)\right)
357 * @f}
358 *
359 * @param[in] c physical constants, stored here to avoid looking them up in a double for loop
360 * @param[in] sea_water_salinity salinity of the ocean immediately adjacent to the shelf, [g/kg]
361 * @param[in] sea_water_potential_temperature potential temperature of the sea water, [degrees Celsius]
362 * @param[in] thickness thickness of the ice shelf, [meters]
363 * @param[out] shelf_base_salinity resulting shelf base salinity
364 *
365 * @return 0 on success
366 */
367void GivenTH::subshelf_salinity_melt(const Constants &c, double sea_water_salinity,
368 double sea_water_potential_temperature, double thickness,
369 double *shelf_base_salinity) {
370
371 const double
376 S_W = sea_water_salinity,
377 Theta_W = sea_water_potential_temperature;
378
379 // We solve a quadratic equation for Sb, the salinity at the shelf
380 // base.
381 //
382 // A*Sb^2 + B*Sb + C = 0
383 const double A = c.a[0] * c.gamma_S * c_pI - c.b[0] * c.gamma_T * c_pW;
384 const double B = (c.gamma_S * (L - c_pI * (T_S + c.a[0] * S_W - c.a[2] * thickness - c.a[1])) +
385 c.gamma_T * c_pW * (Theta_W - c.b[2] * thickness - c.b[1]));
386 const double C = -c.gamma_S * S_W * (L - c_pI * (T_S - c.a[2] * thickness - c.a[1]));
387
388 double S1 = 0.0, S2 = 0.0;
389 const int n_roots = gsl_poly_solve_quadratic(A, B, C, &S1, &S2);
390
391 assert(n_roots > 0);
392 assert(S2 > 0.0); // The bigger root should be positive.
393
394 *shelf_base_salinity = S2;
395}
396
397/** Compute basal salinity in the basal freeze-on case.
398 *
399 * In this case we assume that the temperature gradient at the shelf base is zero:
400 *
401 * @f[ T_{\text{grad}} = 0. @f]
402 *
403 * Please see pointwise_update() for details.
404 *
405 * In this case the coefficients of the quadratic equation for the
406 * basal salinity are:
407 *
408 * @f{align*}{
409 * A &= -b_{0}\,\gamma_T\,c_{pW} \\
410 * B &= \gamma_S\,L+\gamma_T\,c_{pW}\,\left(\Theta^W-b_{2}\,h-b_{1}\right) \\
411 * C &= -\gamma_S\,S^W\,L\\
412 * @f}
413 *
414 * @param[in] c model constants
415 * @param[in] sea_water_salinity sea water salinity
416 * @param[in] sea_water_potential_temperature sea water temperature
417 * @param[in] thickness ice shelf thickness
418 * @param[out] shelf_base_salinity resulting basal salinity
419 *
420 * @return 0 on success
421 */
422void GivenTH::subshelf_salinity_freeze_on(const Constants &c, double sea_water_salinity,
423 double sea_water_potential_temperature, double thickness,
424 double *shelf_base_salinity) {
425
426 const double
429 S_W = sea_water_salinity,
430 Theta_W = sea_water_potential_temperature,
431 h = thickness;
432
433 // We solve a quadratic equation for Sb, the salinity at the shelf
434 // base.
435 //
436 // A*Sb^2 + B*Sb + C = 0
437 const double A = -c.b[0] * c.gamma_T * c_pW;
438 const double B = c.gamma_S * L + c.gamma_T * c_pW * (Theta_W - c.b[2] * h - c.b[1]);
439 const double C = -c.gamma_S * S_W * L;
440
441 double S1 = 0.0, S2 = 0.0;
442 const int n_roots = gsl_poly_solve_quadratic(A, B, C, &S1, &S2);
443
444 assert(n_roots > 0);
445 assert(S2 > 0.0); // The bigger root should be positive.
446
447 *shelf_base_salinity = S2;
448}
449
450/** @brief Compute basal salinity in the case of no basal melt and no
451 * freeze-on, with the diffusion-only temperature distribution in the
452 * ice column.
453 *
454 * In this case the temperature gradient at the base ([@ref
455 * HollandJenkins1999], equation 21) is
456 *
457 * @f[ T_{\text{grad}} = \frac{\Delta T}{h}, @f]
458 *
459 * where @f$ h @f$ is the ice shelf thickness and @f$ \Delta T = T^S -
460 * T^B @f$ is the difference between the temperature at the top and
461 * the bottom of the shelf.
462 *
463 * In this case the coefficients of the quadratic equation for the basal salinity are:
464 *
465 * @f{align*}{
466 * A &= - \frac{b_{0}\,\gamma_T\,h\,\rho_W\,c_{pW}-a_{0}\,\rho_I\,c_{pI}\,\kappa}{h\,\rho_W}\\
467 * B &= \frac{\rho_I\,c_{pI}\,\kappa\,\left(T^S-a_{2}\,h-a_{1}\right)}{h\,\rho_W}
468 +\gamma_S\,L+\gamma_T\,c_{pW}\,\left(\Theta^W-b_{2}\,h-b_{1}\right)\\
469 * C &= -\gamma_S\,S^W\,L\\
470 * @f}
471 *
472 * @param[in] c model constants
473 * @param[in] sea_water_salinity sea water salinity
474 * @param[in] sea_water_potential_temperature sea water potential temperature
475 * @param[in] thickness ice shelf thickness
476 * @param[out] shelf_base_salinity resulting basal salinity
477 *
478 * @return 0 on success
479 */
480void GivenTH::subshelf_salinity_diffusion_only(const Constants &c, double sea_water_salinity,
481 double sea_water_potential_temperature,
482 double thickness, double *shelf_base_salinity) {
483
484 const double
489 S_W = sea_water_salinity,
490 Theta_W = sea_water_potential_temperature,
491 h = thickness,
492 rho_W = c.sea_water_density,
493 rho_I = c.ice_density,
494 kappa = c.ice_thermal_diffusivity;
495
496 // We solve a quadratic equation for Sb, the salinity at the shelf
497 // base.
498 //
499 // A*Sb^2 + B*Sb + C = 0
500 const double A = -(c.b[0] * c.gamma_T * h * rho_W * c_pW - c.a[0] * rho_I * c_pI * kappa) / (h * rho_W);
501 const double B = ((rho_I * c_pI * kappa * (T_S - c.a[2] * h - c.a[1])) / (h * rho_W) +
502 c.gamma_S * L + c.gamma_T * c_pW * (Theta_W - c.b[2] * h - c.b[1]));
503 const double C = -c.gamma_S * S_W * L;
504
505 double S1 = 0.0, S2 = 0.0;
506 const int n_roots = gsl_poly_solve_quadratic(A, B, C, &S1, &S2);
507
508 assert(n_roots > 0);
509 assert(S2 > 0.0); // The bigger root should be positive.
510
511 *shelf_base_salinity = S2;
512}
513
514} // end of namespace ocean
515} // end of namespace pism
const Time & time() const
Definition Component.cc:109
const Config::ConstPtr m_config
configuration database used by this component
Definition Component.hh:158
const Logger::ConstPtr m_log
logger (for easy access)
Definition Component.hh:162
const std::shared_ptr< const Grid > m_grid
grid used by this component
Definition Component.hh:156
double get_number(const std::string &name, UseFlag flag=REMEMBER_THIS_USE) const
bool get_flag(const std::string &name, UseFlag flag=REMEMBER_THIS_USE) const
A class for storing and accessing PISM configuration flags and parameters.
bool variable_exists(const std::string &short_name) const
Checks if a variable exists.
Definition File.cc:378
High-level PISM I/O class.
Definition File.hh:55
array::Scalar2 ice_thickness
Definition Geometry.hh:51
Combines the max. time step with the flag indicating if a restriction is active. Makes is possible to...
Makes sure that we call begin_access() and end_access() for all accessed array::Arrays.
Definition Array.hh:64
void scale(double alpha)
Result: v <- v * alpha. Calls VecScale.
Definition Array.cc:224
static std::shared_ptr< Forcing > Constant(std::shared_ptr< const Grid > grid, const std::string &short_name, double value)
Definition Forcing.cc:148
std::shared_ptr< array::Scalar > m_shelf_base_mass_flux
std::shared_ptr< array::Scalar > m_shelf_base_temperature
Constants(const Config &config)
Definition GivenTH.cc:33
double gamma_S
Turbulent salt transfer coefficient:
Definition GivenTH.hh:49
double gamma_T
Turbulent heat transfer coefficient:
Definition GivenTH.hh:47
GivenTH(std::shared_ptr< const Grid > g)
Definition GivenTH.cc:60
static void subshelf_salinity_diffusion_only(const Constants &constants, double sea_water_salinity, double sea_water_potential_temperature, double ice_thickness, double *shelf_base_salinity)
Compute basal salinity in the case of no basal melt and no freeze-on, with the diffusion-only tempera...
Definition GivenTH.cc:480
static void subshelf_salinity_melt(const Constants &constants, double sea_water_salinity, double sea_water_potential_temperature, double ice_thickness, double *shelf_base_salinity)
Definition GivenTH.cc:367
std::shared_ptr< array::Forcing > m_salinity_ocean
Definition GivenTH.hh:66
std::shared_ptr< array::Forcing > m_theta_ocean
Definition GivenTH.hh:65
static void subshelf_salinity_freeze_on(const Constants &constants, double sea_water_salinity, double sea_water_potential_temperature, double ice_thickness, double *shelf_base_salinity)
Definition GivenTH.cc:422
MaxTimestep max_timestep_impl(double t) const
Definition GivenTH.cc:189
static void pointwise_update(const Constants &constants, double sea_water_salinity, double sea_water_potential_temperature, double ice_thickness, double *shelf_base_temperature_out, double *shelf_base_melt_rate_out)
Compute temperature and melt rate at the base of the shelf. Based on [HellmerOlbers1989] and [Holland...
Definition GivenTH.cc:231
static void subshelf_salinity(const Constants &constants, double sea_water_salinity, double sea_water_potential_temperature, double ice_thickness, double *shelf_base_salinity)
Compute the basal salinity and make sure that it is consistent with the basal melt rate.
Definition GivenTH.cc:288
void update_impl(const Geometry &geometry, double t, double dt)
Definition GivenTH.cc:139
void init_impl(const Geometry &geometry)
Definition GivenTH.cc:96
std::shared_ptr< array::Scalar > m_water_column_pressure
Definition OceanModel.hh:72
void update(const Geometry &geometry, double t, double dt)
Definition OceanModel.cc:89
A very rudimentary PISM ocean model.
Definition OceanModel.hh:33
static const double L
Definition exactTestL.cc:40
@ PISM_GUESS
Definition IO_Flags.hh:56
@ PISM_NETCDF3
Definition IO_Flags.hh:57
@ PISM_READONLY
open an existing file for reading only
Definition IO_Flags.hh:68
bool ocean(int M)
An ocean cell (floating ice or ice-free).
Definition Mask.hh:40
static double melting_point_temperature(GivenTH::Constants c, double salinity, double ice_thickness)
Definition GivenTH.cc:198
void compute_average_water_column_pressure(const Geometry &geometry, double ice_density, double water_density, double standard_gravity, array::Scalar &result)
static double shelf_base_melt_rate(GivenTH::Constants c, double sea_water_salinity, double basal_salinity)
Definition GivenTH.cc:211
static const double g
Definition exactTestP.cc:36
std::string filename
Definition options.hh:33