PISM, A Parallel Ice Sheet Model
stable v2.1.1 committed by Constantine Khrulev on 2024-12-04 13:36:58 -0900
|
◆ subshelf_salinity_diffusion_only()
Compute basal salinity in the case of no basal melt and no freeze-on, with the diffusion-only temperature distribution in the ice column. In this case the temperature gradient at the base ([HollandJenkins1999], equation 21) is \[ T_{\text{grad}} = \frac{\Delta T}{h}, \] where \( h \) is the ice shelf thickness and \( \Delta T = T^S - T^B \) is the difference between the temperature at the top and the bottom of the shelf. In this case the coefficients of the quadratic equation for the basal salinity are: \begin{align*} A &= - \frac{b_{0}\,\gamma_T\,h\,\rho_W\,c_{pW}-a_{0}\,\rho_I\,c_{pI}\,\kappa}{h\,\rho_W}\\ B &= \frac{\rho_I\,c_{pI}\,\kappa\,\left(T^S-a_{2}\,h-a_{1}\right)}{h\,\rho_W} +\gamma_S\,L+\gamma_T\,c_{pW}\,\left(\Theta^W-b_{2}\,h-b_{1}\right)\\ C &= -\gamma_S\,S^W\,L\\ \end{align*}
Definition at line 487 of file GivenTH.cc. References pism::ocean::GivenTH::Constants::a, pism::ocean::GivenTH::Constants::b, C, pism::ocean::GivenTH::Constants::gamma_S, pism::ocean::GivenTH::Constants::gamma_T, pism::ocean::GivenTH::Constants::ice_density, pism::ocean::GivenTH::Constants::ice_specific_heat_capacity, pism::ocean::GivenTH::Constants::ice_thermal_diffusivity, L, pism::ocean::GivenTH::Constants::sea_water_density, pism::ocean::GivenTH::Constants::sea_water_specific_heat_capacity, pism::ocean::GivenTH::Constants::shelf_top_surface_temperature, and pism::ocean::GivenTH::Constants::water_latent_heat_fusion. Referenced by subshelf_salinity(). |