PISM, A Parallel Ice Sheet Model
stable v2.1.1 committed by Constantine Khrulev on 2024-12-04 13:36:58 -0900
|
◆ subshelf_salinity_freeze_on()
Compute basal salinity in the basal freeze-on case. In this case we assume that the temperature gradient at the shelf base is zero: \[ T_{\text{grad}} = 0. \] Please see pointwise_update() for details. In this case the coefficients of the quadratic equation for the basal salinity are: \begin{align*} A &= -b_{0}\,\gamma_T\,c_{pW} \\ B &= \gamma_S\,L+\gamma_T\,c_{pW}\,\left(\Theta^W-b_{2}\,h-b_{1}\right) \\ C &= -\gamma_S\,S^W\,L\\ \end{align*}
Definition at line 427 of file GivenTH.cc. References pism::ocean::GivenTH::Constants::b, C, pism::ocean::GivenTH::Constants::gamma_S, pism::ocean::GivenTH::Constants::gamma_T, L, pism::ocean::GivenTH::Constants::sea_water_specific_heat_capacity, and pism::ocean::GivenTH::Constants::water_latent_heat_fusion. Referenced by subshelf_salinity(). |